QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
- URL: http://arxiv.org/abs/2503.22674v1
- Date: Fri, 28 Mar 2025 17:58:40 GMT
- Title: QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
- Authors: Belinda Z. Li, Been Kim, Zi Wang,
- Abstract summary: In the real world, queries to large language models are often underspecified, only solvable through acquiring missing information.<n>We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question.
- Score: 17.854829489402324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
Related papers
- Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT? [59.418994222096885]
We conduct a detailed analysis of model performance on the AIME24 dataset.
We categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard)
We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT-1K instances.
Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills.
arXiv Detail & Related papers (2025-04-16T03:39:38Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.
We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.
We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems.
We rigorously analyze both final answers and solution steps to identify reasoning failures.
We find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic.
arXiv Detail & Related papers (2025-02-17T09:07:32Z) - Can LLMs Reason in the Wild with Programs? [20.47557047823847]
We introduce the task of reasoning in the wild, where an LLM is tasked to solve a reasoning problem of unknown type.
We create a large tactic-guided trajectory dataset containing detailed solutions to a diverse set of reasoning problems.
In experiments, we highlight that existing LLMs fail significantly on problems with ambiguous and mixed scope.
arXiv Detail & Related papers (2024-06-19T18:26:19Z) - Can multiple-choice questions really be useful in detecting the abilities of LLMs? [15.756543037102256]
Multiple-choice questions (MCQs) are widely used in the evaluation of large language models (LLMs)
The misalignment between the task and the evaluation method demands a thoughtful analysis of MCQ's efficacy.
We evaluate nine LLMs on four question-answering (QA) datasets in two languages: Chinese and English.
arXiv Detail & Related papers (2024-03-26T14:43:48Z) - Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs [102.37496443389203]
'Logic-Query-of-Thoughts' (LGOT) is the first of its kind to combine knowledge graph reasoning and large language models.<n>Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.
arXiv Detail & Related papers (2024-03-17T17:01:45Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
We present Reasoning Question Prompts for VQA tasks, which can further activate the potential of Large Language Models.
We generate self-contained questions as reasoning question prompts via an unsupervised question edition module.
Each reasoning question prompt clearly indicates the intent of the original question.
Then, the candidate answers associated with their confidence scores acting as answer integritys are fed into LLMs.
arXiv Detail & Related papers (2023-11-15T15:40:46Z) - SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step
Reasoning [55.76083560152823]
SelfCheck is a general-purpose zero-shot verification schema for recognizing errors in step-by-step reasoning.
We test SelfCheck on three datasets (GSM8K, MathQA, and MATH) and find that it successfully recognizes errors and, in turn, increases final answer accuracies.
arXiv Detail & Related papers (2023-08-01T10:31:36Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.