論文の概要: Qieemo: Speech Is All You Need in the Emotion Recognition in Conversations
- arxiv url: http://arxiv.org/abs/2503.22687v1
- Date: Wed, 05 Mar 2025 07:02:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-06 08:26:14.740899
- Title: Qieemo: Speech Is All You Need in the Emotion Recognition in Conversations
- Title(参考訳): Qieemo:会話における感情認識に必要なのは音声だけだ
- Authors: Jinming Chen, Jingyi Fang, Yuanzhong Zheng, Yaoxuan Wang, Haojun Fei,
- Abstract要約: マルチモーダルアプローチは多様なモダリティの融合による恩恵を受け、認識精度が向上する。
提案するQieemoフレームワークは,自然なフレームアライメントと感情的特徴を含む事前学習された自動音声認識(ASR)モデルを効果的に活用する。
IEMOCAPデータセットの実験結果は、Qieemoがそれぞれ3.0%、1.2%、および1.9%の絶対的な改善でベンチマークアンモダル、マルチモーダル、セルフ教師付きモデルを上回っていることを示している。
- 参考スコア(独自算出の注目度): 1.0690007351232649
- License:
- Abstract: Emotion recognition plays a pivotal role in intelligent human-machine interaction systems. Multimodal approaches benefit from the fusion of diverse modalities, thereby improving the recognition accuracy. However, the lack of high-quality multimodal data and the challenge of achieving optimal alignment between different modalities significantly limit the potential for improvement in multimodal approaches. In this paper, the proposed Qieemo framework effectively utilizes the pretrained automatic speech recognition (ASR) model backbone which contains naturally frame aligned textual and emotional features, to achieve precise emotion classification solely based on the audio modality. Furthermore, we design the multimodal fusion (MMF) module and cross-modal attention (CMA) module in order to fuse the phonetic posteriorgram (PPG) and emotional features extracted by the ASR encoder for improving recognition accuracy. The experimental results on the IEMOCAP dataset demonstrate that Qieemo outperforms the benchmark unimodal, multimodal, and self-supervised models with absolute improvements of 3.0%, 1.2%, and 1.9% respectively.
- Abstract(参考訳): 感情認識は、インテリジェントな人間と機械の相互作用システムにおいて重要な役割を果たす。
マルチモーダルアプローチは多様なモダリティの融合による恩恵を受け、認識精度が向上する。
しかし、高品質なマルチモーダルデータの欠如と、異なるモーダル間の最適なアライメントを達成するという課題により、マルチモーダルアプローチの改善の可能性は著しく制限される。
本稿では,Qieemoフレームワークを用いて,音声のモーダルのみに基づく正確な感情分類を実現するために,自然なフレームアライメントと感情的特徴を含む事前学習された自動音声認識(ASR)モデルバックボーンを効果的に活用する。
さらに, 音声認識精度を向上させるために, ASRエンコーダで抽出した音声後部グラフ(PPG)と感情特徴を融合させるために, MMFモジュールとCMAモジュールを設計した。
IEMOCAPデータセットの実験結果は、Qieemoがそれぞれ3.0%、1.2%、および1.9%の絶対的な改善でベンチマークアンモダル、マルチモーダル、セルフ教師付きモデルを上回っていることを示している。
関連論文リスト
- MFHCA: Enhancing Speech Emotion Recognition Via Multi-Spatial Fusion and Hierarchical Cooperative Attention [6.725011823614421]
本稿では,マルチ空間融合と階層的協調注意を用いた音声感情認識手法であるMFHCAを紹介する。
我々はMF(Multi-Spatial Fusion Module)を用いて感情関連スペクトログラム領域を効率よく同定し、ハイレベル音響情報にヒューバート特徴を統合する。
提案手法をIEMOCAPデータセット上で評価し,重み付き精度と非重み付き精度をそれぞれ2.6%,1.87%改善した。
論文 参考訳(メタデータ) (2024-04-21T02:44:17Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
AIMDiTと呼ばれる新しいフレームワークを提案し、深い特徴のマルチモーダル融合の問題を解決する。
公開ベンチマークデータセットMELDでAIMDiTフレームワークを使用して行った実験では、Acc-7とw-F1メトリクスの2.34%と2.87%の改善が明らかにされた。
論文 参考訳(メタデータ) (2024-04-12T11:31:18Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
異なるレベルのオーディオ/視覚エンコーダに融合することで、各モードの表現を促進する多層クロスアテンション融合に基づくAVSR手法を提案する。
提案手法は第1位システムを超え,新たなSOTA cpCERの29.13%をこのデータセット上に構築する。
論文 参考訳(メタデータ) (2024-01-07T08:59:32Z) - Cross-Language Speech Emotion Recognition Using Multimodal Dual
Attention Transformers [5.538923337818467]
最先端のシステムでは、言語間の設定でパフォーマンスが向上することができない。
言語間SERを改善するためのマルチモーダルデュアルアテンショントランスモデルを提案する。
論文 参考訳(メタデータ) (2023-06-23T22:38:32Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
マルチモーダル融合に対する最近のディープラーニングアプローチは、ハイレベルおよびミドルレベルの潜在モダリティ表現のボトムアップ融合に依存している。
人間の知覚モデルでは、高レベルの表現が感覚入力の知覚に影響を及ぼすトップダウン融合の重要性を強調している。
本稿では,ネットワークトレーニング中のフォワードパスにおけるフィードバック機構を用いて,トップダウンのクロスモーダルインタラクションをキャプチャするニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-24T17:48:04Z) - Fusion with Hierarchical Graphs for Mulitmodal Emotion Recognition [7.147235324895931]
本稿では,より情報に富んだマルチモーダル表現を学習する階層型グラフネットワーク(HFGCN)モデルを提案する。
具体的には,2段階グラフ構築手法を用いてマルチモーダル入力を融合し,モダリティ依存性を会話表現にエンコードする。
実験により,より正確なAERモデルの有効性が示された。
論文 参考訳(メタデータ) (2021-09-15T08:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。