論文の概要: From Occurrence to Consequence: A Comprehensive Data-driven Analysis of Building Fire Risk
- arxiv url: http://arxiv.org/abs/2503.22689v1
- Date: Tue, 11 Mar 2025 14:55:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-06 07:58:38.483903
- Title: From Occurrence to Consequence: A Comprehensive Data-driven Analysis of Building Fire Risk
- Title(参考訳): 発生から発生へ:建築火災リスクの包括的データ駆動分析
- Authors: Chenzhi Ma, Hongru Du, Shengzhi Luan, Ensheng Dong, Lauren M. Gardner, Thomas Gernay,
- Abstract要約: 建築火災は、生命、財産、インフラに永続的な脅威をもたらす。
本研究では,米国の火災リスクを分析したデータ駆動型フレームワークを提案する。
火災の発生と結果に影響を及ぼす主要なリスク要因を同定する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Building fires pose a persistent threat to life, property, and infrastructure, emphasizing the need for advanced risk mitigation strategies. This study presents a data-driven framework analyzing U.S. fire risks by integrating over one million fire incident reports with diverse fire-relevant datasets, including social determinants, building inventories, weather conditions, and incident-specific factors. By adapting machine learning models, we identify key risk factors influencing fire occurrence and consequences. Our findings show that vulnerable communities, characterized by socioeconomic disparities or the prevalence of outdated or vacant buildings, face higher fire risks. Incident-specific factors, such as fire origins and safety features, strongly influence fire consequences. Buildings equipped with fire detectors and automatic extinguishing systems experience significantly lower fire spread and injury risks. By pinpointing high-risk areas and populations, this research supports targeted interventions, including mandating fire safety systems and providing subsidies for disadvantaged communities. These measures can enhance fire prevention, protect vulnerable groups, and promote safer, more equitable communities.
- Abstract(参考訳): 火災は生命、財産、インフラに永続的な脅威をもたらし、高度なリスク軽減戦略の必要性を強調している。
本研究では、社会決定要因、建築在庫、気象条件、インシデント固有の要因を含む多様な火災関連データセットと100万件以上の火災報告を統合することで、米国の火災リスクを分析するデータ駆動フレームワークを提案する。
機械学習モデルを適用することで、火災の発生と結果に影響を及ぼす主要なリスク要因を特定する。
以上の結果から, 社会経済的格差や時代遅れや空きビルの出現が特徴の脆弱な地域社会は, 高い火災リスクに直面していることが明らかとなった。
火災の発生源や安全特徴などの事象固有の要因は、火災の結果に強く影響を及ぼす。
火災検知器と自動消火システムを備えた建物では、火災の拡散と損傷のリスクが著しく低い。
リスクの高い地域や人口を選別することで、火災安全システムを強制し、不利な地域社会に補助を提供するなど、対象とする介入を支援する。
これらの措置は、火災防止を強化し、脆弱なグループを保護し、より安全で公平なコミュニティを促進する。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - HACSurv: A Hierarchical Copula-Based Approach for Survival Analysis with Dependent Competing Risks [51.95824566163554]
本稿では,階層型アルキメデスコピュラス構造を学習する生存分析手法であるHACSurvを紹介する。
リスクと検閲の間の依存関係をキャプチャすることで、HACSurvは生存予測の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-19T18:52:18Z) - Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
本研究は,過去12年間のオーストラリアにおける森林火災の深刻度を詳細に分析した。
ランドサット画像を活用し,NDVI,NBR,バーン指数などのスペクトル指標と地形的・気候的要因を併用することにより,ロバストな予測モデルを構築した。
このモデルは86.13%の精度を達成し、様々なオーストラリアの生態系で火災の深刻度を予測する効果を示した。
論文 参考訳(メタデータ) (2024-09-18T04:57:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
森林火災は生命、財産、生態学、文化遺産、重要なインフラに脅威をもたらす。
SimFireは、現実的な山火事シナリオを生成するために設計された、多用途の野火投射シミュレータである。
SimHarnessはモジュール型のエージェントベースの機械学習ラッパーで、自動的に土地管理戦略を生成することができる。
論文 参考訳(メタデータ) (2023-11-27T15:37:05Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
包括的不安全テキストは、日常的なシナリオから生じる可能性のある特定の関心領域であり、有害なテキストを検出するのが困難である。
安全の文脈において、信頼に値する合理的な生成のために外部知識を活用する新しいフレームワークであるFARMを提案する。
実験の結果,FARMはSafeTextデータセットの最先端結果を得ることができ,安全性の分類精度が5.9%向上したことがわかった。
論文 参考訳(メタデータ) (2022-12-19T17:51:47Z) - Wildfire risk forecast: An optimizable fire danger index [0.0]
森林火災は世界中の多くの地域で深刻な被害をもたらしており、気候変動によって増加すると予想されている。
火災リスク指標は、火災のリスクを予測するために天気予報を使用する。
火災リスク指標の予測は、リスクの高い場所で資源を割り当てるために使用することができる。
そこで本研究では,勾配降下による内部パラメータの最適化が可能な微分可能な関数として,一指標(NFDRS IC)の新たな実装を提案する。
論文 参考訳(メタデータ) (2022-03-28T14:08:49Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
我々は,山火事リスク予測のための深層学習に基づくデータ拡張手法を開発した。
提案手法を採用することで,地球規模の温室効果ガス排出量削減のため,山火事対策の予防戦略を採ることができる。
論文 参考訳(メタデータ) (2021-08-20T00:36:30Z) - Comparing ML based Segmentation Models on Jet Fire Radiation Zone [0.0]
リスク管理の観点からは,火災事故の特徴付けが重要である。
そのような特徴の1つは、火炎内の異なる放射帯のセグメンテーションである。
プロパンジェット火災のデータセットは、異なるアプローチの訓練と評価に使用される。
論文 参考訳(メタデータ) (2021-07-07T19:52:52Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。