Multiple Embeddings for Quantum Machine Learning
- URL: http://arxiv.org/abs/2503.22758v1
- Date: Thu, 27 Mar 2025 15:16:53 GMT
- Title: Multiple Embeddings for Quantum Machine Learning
- Authors: Siyu Han, Lihan Jia, Lanzhe Guo,
- Abstract summary: We propose a novel quantum machine learning framework that integrates multiple quantum data embedding strategies.<n> Experimental results validate the effectiveness of the proposed framework, demonstrating significant improvements over existing state-of-the-art methods.
- Score: 12.187305031893711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work focuses on the limitations about the insufficient fitting capability of current quantum machine learning methods, which results from the over-reliance on a single data embedding strategy. We propose a novel quantum machine learning framework that integrates multiple quantum data embedding strategies, allowing the model to fully exploit the diversity of quantum computing when processing various datasets. Experimental results validate the effectiveness of the proposed framework, demonstrating significant improvements over existing state-of-the-art methods and achieving superior performance in practical applications.
Related papers
- Learning complexity gradually in quantum machine learning models [0.29998889086656577]
We propose a framework that prioritizes informative data points over the entire training set.
By selectively focusing on informative samples, we aim to steer the optimization process toward more favorable regions of the parameter space.
Our findings indicate that this strategy could be a valuable approach for improving the performance of quantum machine learning models.
arXiv Detail & Related papers (2024-11-18T19:00:01Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Deep reinforcement learning for quantum multiparameter estimation [0.0]
We introduce a model-free and deep learning-based approach to implement realistic Bayesian quantum metrology tasks.
We prove experimentally the achievement of higher estimation performances than standard methods.
arXiv Detail & Related papers (2022-09-01T18:01:56Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Experimental statistical signature of many-body quantum interference [0.1376305268426979]
We experimentally identify genuine many-body quantum interference via a recent efficient protocol.
We show how such tools help to identify the - a priori unknown - optimal features to witness these signatures.
Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.
arXiv Detail & Related papers (2021-03-30T15:17:05Z) - How to enhance quantum generative adversarial learning of noisy
information [5.8010446129208155]
We show how different training problems may occur during the optimization process.
We propose new strategies to achieve a faster convergence in any operating regime.
Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols.
arXiv Detail & Related papers (2020-12-10T21:48:26Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.