Learning complexity gradually in quantum machine learning models
- URL: http://arxiv.org/abs/2411.11954v1
- Date: Mon, 18 Nov 2024 19:00:01 GMT
- Title: Learning complexity gradually in quantum machine learning models
- Authors: Erik Recio-Armengol, Franz J. Schreiber, Jens Eisert, Carlos Bravo-Prieto,
- Abstract summary: We propose a framework that prioritizes informative data points over the entire training set.
By selectively focusing on informative samples, we aim to steer the optimization process toward more favorable regions of the parameter space.
Our findings indicate that this strategy could be a valuable approach for improving the performance of quantum machine learning models.
- Score: 0.29998889086656577
- License:
- Abstract: Quantum machine learning is an emergent field that continues to draw significant interest for its potential to offer improvements over classical algorithms in certain areas. However, training quantum models remains a challenging task, largely because of the difficulty in establishing an effective inductive bias when solving high-dimensional problems. In this work, we propose a training framework that prioritizes informative data points over the entire training set. This approach draws inspiration from classical techniques such as curriculum learning and hard example mining to introduce an additional inductive bias through the training data itself. By selectively focusing on informative samples, we aim to steer the optimization process toward more favorable regions of the parameter space. This data-centric approach complements existing strategies such as warm-start initialization methods, providing an additional pathway to address performance challenges in quantum machine learning. We provide theoretical insights into the benefits of prioritizing informative data for quantum models, and we validate our methodology with numerical experiments on selected recognition tasks of quantum phases of matter. Our findings indicate that this strategy could be a valuable approach for improving the performance of quantum machine learning models.
Related papers
- Quantum-Powered Personalized Learning [3.1523832615228295]
We review existing personalized learning systems, classical machine learning methods, and emerging quantum computing applications in education.
Our findings indicate that quantum algorithms offer substantial improvements in efficiency, scalability, and personalization quality compared to classical methods.
arXiv Detail & Related papers (2024-08-25T17:45:48Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Evolutionary-enhanced quantum supervised learning model [0.0]
This study proposes an evolutionary-enhanced ansatz-free supervised learning model.
In contrast to parametrized circuits, our model employs circuits with variable topology that evolves through an elitist method.
Our framework successfully avoids barren plateaus, resulting in enhanced model accuracy.
arXiv Detail & Related papers (2023-11-14T11:08:47Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning.
We present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels.
arXiv Detail & Related papers (2023-09-19T08:59:46Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Deep reinforcement learning for quantum multiparameter estimation [0.0]
We introduce a model-free and deep learning-based approach to implement realistic Bayesian quantum metrology tasks.
We prove experimentally the achievement of higher estimation performances than standard methods.
arXiv Detail & Related papers (2022-09-01T18:01:56Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.