A Resource Efficient Quantum Kernel
- URL: http://arxiv.org/abs/2507.03689v2
- Date: Tue, 15 Jul 2025 15:37:48 GMT
- Title: A Resource Efficient Quantum Kernel
- Authors: Utkarsh Singh, Jean-Frédéric Laprade, Aaron Z. Goldberg, Khabat Heshami,
- Abstract summary: We introduce a quantum kernel designed to handle high-dimensional data with a significantly reduced number of qubits and entangling operations.<n>Our approach preserves essential data characteristics while promoting computational efficiency.<n>Our findings herald a promising avenue for the practical implementation of quantum machine learning algorithms on near future quantum computing platforms.
- Score: 1.7249361224827533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum processors may enhance machine learning by mapping high-dimensional data onto quantum systems for processing. Conventional quantum kernels, or feature maps, for encoding data features onto a quantum circuit are currently impractical, as the number of entangling gates scales quadratically with the dimension of the dataset and the number of qubits. In this work, we introduce a quantum kernel designed to handle high-dimensional data with a significantly reduced number of qubits and entangling operations. Our approach preserves essential data characteristics while promoting computational efficiency, as evidenced by extensive experiments on benchmark datasets that demonstrate a marked improvement in both accuracy and resource utilization, as compared to state-of-the-art quantum feature maps. Our noisy simulations results combined with lower resource requirements highlight our kernel's ability to function within the constraints of noisy intermediate-scale quantum devices. Through numerical simulations and small-scale implementation on a superconducting circuit quantum computing platform, we demonstrate that our scheme performs on par or better than a set of classical algorithms for classification. Our findings herald a promising avenue for the practical implementation of quantum machine learning algorithms on near future quantum computing platforms.
Related papers
- Advancing Quantum State Preparation Using Decision Diagram with Local Invertible Maps [5.328178128965817]
We propose a family of efficient Quantum State Preparation (QSP) algorithms tailored to different numbers of available ancilla qubits.<n>Our approach exploits the power of Local Invertible Map Decision Diagrams (LimTDDs) to reduce quantum circuit complexity.
arXiv Detail & Related papers (2025-07-23T03:34:44Z) - Typical Machine Learning Datasets as Low-Depth Quantum Circuits [0.40329768057075643]
We develop an efficient algorithm for finding low-depth quantum circuits to load classical image data as quantum states.<n>We conduct systematic studies on the MNIST, Fashion-MNIST, CIFAR-10, and Imagenette datasets.
arXiv Detail & Related papers (2025-05-06T10:27:51Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.