Policy Optimization and Multi-agent Reinforcement Learning for Mean-variance Team Stochastic Games
- URL: http://arxiv.org/abs/2503.22779v1
- Date: Fri, 28 Mar 2025 16:21:05 GMT
- Title: Policy Optimization and Multi-agent Reinforcement Learning for Mean-variance Team Stochastic Games
- Authors: Junkai Hu, Li Xia,
- Abstract summary: We study a long-run mean-variance team game (MV-TSG)<n>MV-TSG has two main challenges. First, the variance metric is neither additive nor Markovian in a dynamic setting.<n>We propose a Mean-Variance Multi-Agent Policy Iteration (MV-MAPI) algorithm with a sequential update scheme.<n>We derive specific conditions for stationary points to be Nash equilibria, and further, strict local optima.
- Score: 1.430310470698995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a long-run mean-variance team stochastic game (MV-TSG), where each agent shares a common mean-variance objective for the system and takes actions independently to maximize it. MV-TSG has two main challenges. First, the variance metric is neither additive nor Markovian in a dynamic setting. Second, simultaneous policy updates of all agents lead to a non-stationary environment for each individual agent. Both challenges make dynamic programming inapplicable. In this paper, we study MV-TSGs from the perspective of sensitivity-based optimization. The performance difference and performance derivative formulas for joint policies are derived, which provide optimization information for MV-TSGs. We prove the existence of a deterministic Nash policy for this problem. Subsequently, we propose a Mean-Variance Multi-Agent Policy Iteration (MV-MAPI) algorithm with a sequential update scheme, where individual agent policies are updated one by one in a given order. We prove that the MV-MAPI algorithm converges to a first-order stationary point of the objective function. By analyzing the local geometry of stationary points, we derive specific conditions for stationary points to be (local) Nash equilibria, and further, strict local optima. To solve large-scale MV-TSGs in scenarios with unknown environmental parameters, we extend the idea of trust region methods to MV-MAPI and develop a multi-agent reinforcement learning algorithm named Mean-Variance Multi-Agent Trust Region Policy Optimization (MV-MATRPO). We derive a performance lower bound for each update of joint policies. Finally, numerical experiments on energy management in multiple microgrid systems are conducted.
Related papers
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Optimistic Multi-Agent Policy Gradient [23.781837938235036]
Relative overgeneralization (RO) occurs when agents converge towards a suboptimal joint policy.
No methods have been proposed for addressing RO in multi-agent policy gradient (MAPG) methods.
We propose a general, yet simple, framework to enable optimistic updates in MAPG methods that alleviate the RO problem.
arXiv Detail & Related papers (2023-11-03T14:47:54Z) - Federated Natural Policy Gradient and Actor Critic Methods for Multi-task Reinforcement Learning [46.28771270378047]
Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories.
In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment.
We learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner.
arXiv Detail & Related papers (2023-11-01T00:15:18Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Multi-Agent Trust Region Policy Optimization [34.91180300856614]
We show that the policy update of TRPO can be transformed into a distributed consensus optimization problem for multi-agent cases.
We propose a decentralized MARL algorithm, which we call multi-agent TRPO (MATRPO)
arXiv Detail & Related papers (2020-10-15T17:49:47Z) - Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field
Control/Game in Continuous Time [109.06623773924737]
We study the policy gradient method for the linear-quadratic mean-field control and game.
We show that it converges to the optimal solution at a linear rate, which is verified by a synthetic simulation.
arXiv Detail & Related papers (2020-08-16T06:34:11Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Dynamic Value Estimation for Single-Task Multi-Scene Reinforcement
Learning [22.889059874754242]
Training deep reinforcement learning agents on environments with multiple levels / scenes / conditions from the same task, has become essential for many applications.
We propose a dynamic value estimation (DVE) technique for these multiple-MDP environments, motivated by the clustering effect observed in the value function distribution across different scenes.
arXiv Detail & Related papers (2020-05-25T17:56:08Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.