論文の概要: Identifying and Mitigating API Misuse in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.22821v1
- Date: Fri, 28 Mar 2025 18:43:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:49.308416
- Title: Identifying and Mitigating API Misuse in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるAPI誤用の特定と誤用
- Authors: Terry Yue Zhuo, Junda He, Jiamou Sun, Zhenchang Xing, David Lo, John Grundy, Xiaoning Du,
- Abstract要約: 大規模言語モデル(LLM)が生成するコードのAPI誤用は、ソフトウェア開発において深刻な課題となっている。
本稿では LLM 生成コードにおける API の誤用パターンについて,Python および Java 間でのメソッド選択とパラメータ使用法の両方を解析し,総合的研究を行った。
上記の分類に基づくAPI誤用に対する新しいLCMベースの自動プログラム修復手法であるDr.Fixを提案する。
- 参考スコア(独自算出の注目度): 26.4403427473915
- License:
- Abstract: API misuse in code generated by large language models (LLMs) represents a serious emerging challenge in software development. While LLMs have demonstrated impressive code generation capabilities, their interactions with complex library APIs remain highly prone to errors, potentially leading to software failures and security vulnerabilities. This paper presents the first comprehensive study of API misuse patterns in LLM-generated code, analyzing both method selection and parameter usage across Python and Java. Through extensive manual annotation of 3,892 method-level and 2,560 parameter-level misuses, we develop a novel taxonomy of four distinct API misuse types specific to LLMs, which significantly differ from traditional human-centric misuse patterns. Our evaluation of two widely used LLMs, StarCoder-7B (open-source) and Copilot (closed-source), reveals significant challenges in API usage, particularly in areas of hallucination and intent misalignment. We propose Dr.Fix, a novel LLM-based automatic program repair approach for API misuse based on the aforementioned taxonomy. Our method substantially improves repair accuracy for real-world API misuse, demonstrated by increases of up to 38.4 points in BLEU scores and 40 percentage points in exact match rates across different models and programming languages. This work provides crucial insights into the limitations of current LLMs in API usage and presents an effective solution for the automated repair of API misuse in LLM-generated code.
- Abstract(参考訳): 大規模言語モデル(LLM)が生成するコードのAPI誤用は、ソフトウェア開発において深刻な課題となっている。
LLMは印象的なコード生成機能を示しているが、複雑なライブラリAPIとのインタラクションはエラーを起こしやすく、ソフトウェア障害やセキュリティ上の脆弱性につながる可能性がある。
本稿では LLM 生成コードにおける API の誤用パターンについて,Python および Java 間でのメソッド選択とパラメータ使用法の両方を解析し,包括的な研究を行った。
3,892件のメソッドレベルの誤用と2,560件のパラメータレベルの誤用を広範囲に手作業で注釈し,従来の人間中心の誤用パターンとは大きく異なる4つの異なるAPI誤用の分類法を開発した。
StarCoder-7B (オープンソース) とCopilot (オープンソース) の2つの LLM の評価では,特に幻覚や意図的ミスアライメントの領域において,API の利用において重要な課題が明らかにされている。
上記の分類に基づくAPI誤用に対する新しいLCMベースの自動プログラム修復手法であるDr.Fixを提案する。
BLEUスコアの最大38.4ポイントと、異なるモデルやプログラミング言語間での正確な一致率の40パーセントの増加により、実世界のAPI誤用に対する修復精度を大幅に向上させる。
この研究は、API使用における現在のLLMの限界に関する重要な洞察を提供し、LLM生成コードにおけるAPI誤使用の自動修復のための効果的なソリューションを提供する。
関連論文リスト
- Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
AIアプリケーションで広く使用されているディープラーニング(DL)ライブラリは、オーバーフローやバッファフリーエラーなどの脆弱性を含むことが多い。
従来のファジィングはDLライブラリの複雑さとAPIの多様性に悩まされている。
DLライブラリのためのLLM駆動ファジィ手法であるDFUZZを提案する。
論文 参考訳(メタデータ) (2025-01-08T07:07:22Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoderはトレーニング不要のフレームワークで、大規模な言語モデルにコードソリューションで見えないAPIを呼び出す権限を与える。
ExploraCoderは,事前のAPI知識を欠いたモデルのパフォーマンスを著しく向上させ,NAGアプローチの11.24%,pass@10の事前トレーニングメソッドの14.07%を絶対的に向上させることを示す。
論文 参考訳(メタデータ) (2024-12-06T19:00:15Z) - APILOT: Navigating Large Language Models to Generate Secure Code by Sidestepping Outdated API Pitfalls [15.865915079829943]
APILOTは、時代遅れのAPIのリアルタイム、即時更新可能なデータセットを維持している。
拡張ジェネレーションメソッドを使用して、セキュアでバージョン対応のコードを生成するLLMをナビゲートする。
古いコードレコメンデーションを平均89.42%削減し、パフォーマンス上のオーバーヘッドを制限できる。
論文 参考訳(メタデータ) (2024-09-25T00:37:40Z) - A Comprehensive Framework for Evaluating API-oriented Code Generation in Large Language Models [14.665460257371164]
GitHub CopilotやChatGPTのような大規模言語モデル(LLM)は、コード生成の強力なツールとして登場した。
API指向コード生成におけるLLMの機能を評価するために設計されたフレームワークであるAutoAPIEvalを提案する。
論文 参考訳(メタデータ) (2024-09-23T17:22:09Z) - Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation [0.0]
本稿では,自然言語入力を対応するAPI呼び出しに分類するために,Large Language Models (LLM) を統合する新しいシステムを提案する。
本システムでは,単純な入力による複雑なソフトウェア機能の実行,インタラクション効率の向上,ソフトウェア利用障壁の低減を実現している。
論文 参考訳(メタデータ) (2024-09-18T04:56:52Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Octopus: On-device language model for function calling of software APIs [9.78611123915888]
大きな言語モデル(LLM)は、高度なテキスト処理と生成能力のために重要な役割を果たす。
本研究は,ソフトウェアAPIの起動において,デバイス上でのLCMを活用するための新たな戦略を提案する。
論文 参考訳(メタデータ) (2024-04-02T01:29:28Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
テストカバレッジ情報なしでバグの行を特定できる言語モデルに基づくフォールトローカライズ手法を提案する。
5億5000万、60億、160億のパラメータを持つ言語モデルを、手作業でキュレートされた小さなプログラムコーパスで微調整します。
実験により、LLMAOは最先端の機械学習フォールトローカライゼーション(MLFL)ベースラインを2.3%-54.4%改善し、トップ5の結果を14.4%-35.6%改善した。
論文 参考訳(メタデータ) (2023-10-03T01:26:39Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。