Pairwise Matching of Intermediate Representations for Fine-grained Explainability
- URL: http://arxiv.org/abs/2503.22881v1
- Date: Fri, 28 Mar 2025 21:13:43 GMT
- Title: Pairwise Matching of Intermediate Representations for Fine-grained Explainability
- Authors: Lauren Shrack, Timm Haucke, Antoine Salaün, Arjun Subramonian, Sara Beery,
- Abstract summary: We propose a new explainability method (PAIR-X) to generate fine-grained, highly-localized pairwise visual explanations.<n>By improving interpretability, PAIR-X enables humans to better distinguish correct and incorrect matches.
- Score: 7.415710605852485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The differences between images belonging to fine-grained categories are often subtle and highly localized, and existing explainability techniques for deep learning models are often too diffuse to provide useful and interpretable explanations. We propose a new explainability method (PAIR-X) that leverages both intermediate model activations and backpropagated relevance scores to generate fine-grained, highly-localized pairwise visual explanations. We use animal and building re-identification (re-ID) as a primary case study of our method, and we demonstrate qualitatively improved results over a diverse set of explainability baselines on 35 public re-ID datasets. In interviews, animal re-ID experts were in unanimous agreement that PAIR-X was an improvement over existing baselines for deep model explainability, and suggested that its visualizations would be directly applicable to their work. We also propose a novel quantitative evaluation metric for our method, and demonstrate that PAIR-X visualizations appear more plausible for correct image matches than incorrect ones even when the model similarity score for the pairs is the same. By improving interpretability, PAIR-X enables humans to better distinguish correct and incorrect matches. Our code is available at: https://github.com/pairx-explains/pairx
Related papers
- The "Law" of the Unconscious Contrastive Learner: Probabilistic Alignment of Unpaired Modalities [23.188014611990152]
This paper builds on work on the geometry and probabilistic interpretation of contrastive representations.<n>We show how these representations can answer many of the same inferences as probabilistic graphical models.<n>Our analysis suggests two new ways of using contrastive representations: in settings with pre-trained contrastive models, and for handling language ambiguity in reinforcement learning.
arXiv Detail & Related papers (2025-01-20T08:10:15Z) - Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - Contrastive Learning with Counterfactual Explanations for Radiology Report Generation [83.30609465252441]
We propose a textbfCountertextbfFactual textbfExplanations-based framework (CoFE) for radiology report generation.
Counterfactual explanations serve as a potent tool for understanding how decisions made by algorithms can be changed by asking what if'' scenarios.
Experiments on two benchmarks demonstrate that leveraging the counterfactual explanations enables CoFE to generate semantically coherent and factually complete reports.
arXiv Detail & Related papers (2024-07-19T17:24:25Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
Open set recognition (OSR) requires the model to classify samples that belong to closed sets while rejecting unknown samples during test.
Currently, generative models often perform better than discriminative models in OSR.
We propose a new model, namely Multi-Expert Diverse Attention Fusion (MEDAF), that learns diverse representations in a discriminative way.
arXiv Detail & Related papers (2024-01-12T11:40:22Z) - Improving Explainability of Disentangled Representations using
Multipath-Attribution Mappings [12.145748796751619]
We propose a framework that utilizes interpretable disentangled representations for downstream-task prediction.
We demonstrate the effectiveness of our approach on a synthetic benchmark suite and two medical datasets.
arXiv Detail & Related papers (2023-06-15T10:52:29Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification [21.842139093124512]
We introduce SEED, a novel vector-based method to claim veracity classification.
We build on the hypothesis that we can simulate class representative vectors that capture average semantic differences for claim-evidence pairs in a class.
Experiments conducted on the FEVER and SCIFACT datasets show consistent improvements over competitive baselines in few-shot settings.
arXiv Detail & Related papers (2022-05-11T17:23:37Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
We introduce ADVISE, a new explainability method that quantifies and leverages the relevance of each unit of the feature map to provide better visual explanations.
We extensively evaluate our idea in the image classification task using AlexNet, VGG16, ResNet50, and Xception pretrained on ImageNet.
Our experiments further show that ADVISE fulfils the sensitivity and implementation independence axioms while passing the sanity checks.
arXiv Detail & Related papers (2022-03-02T18:16:57Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
We present a simple model that can be trained on sequence structures.
Results on a large-scale dataset for Fact Extraction and VERification show that our model outperforms the graph-based approaches.
arXiv Detail & Related papers (2021-06-02T05:40:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.