Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification
- URL: http://arxiv.org/abs/2205.05646v1
- Date: Wed, 11 May 2022 17:23:37 GMT
- Title: Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity
Classification
- Authors: Xia Zeng, Arkaitz Zubiaga
- Abstract summary: We introduce SEED, a novel vector-based method to claim veracity classification.
We build on the hypothesis that we can simulate class representative vectors that capture average semantic differences for claim-evidence pairs in a class.
Experiments conducted on the FEVER and SCIFACT datasets show consistent improvements over competitive baselines in few-shot settings.
- Score: 21.842139093124512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As part of an automated fact-checking pipeline, the claim veracity
classification task consists in determining if a claim is supported by an
associated piece of evidence. The complexity of gathering labelled
claim-evidence pairs leads to a scarcity of datasets, particularly when dealing
with new domains. In this paper, we introduce SEED, a novel vector-based method
to few-shot claim veracity classification that aggregates pairwise semantic
differences for claim-evidence pairs. We build on the hypothesis that we can
simulate class representative vectors that capture average semantic differences
for claim-evidence pairs in a class, which can then be used for classification
of new instances. We compare the performance of our method with competitive
baselines including fine-tuned BERT/RoBERTa models, as well as the
state-of-the-art few-shot veracity classification method that leverages
language model perplexity. Experiments conducted on the FEVER and SCIFACT
datasets show consistent improvements over competitive baselines in few-shot
settings. Our code is available.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided
Relation Alignment and Adaptation [98.51938442785179]
Incremental few-shot semantic segmentation aims to incrementally extend a semantic segmentation model to novel classes.
This task faces a severe semantic-aliasing issue between base and novel classes due to data imbalance.
We propose the Semantic-guided Relation Alignment and Adaptation (SRAA) method that fully considers the guidance of prior semantic information.
arXiv Detail & Related papers (2023-05-18T10:40:52Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
We propose a $k$-nearest-neighbor (KNN)-based method for retrieval augmented classifications.
We find that shared representation for classification and retrieval hurts performance and leads to training instability.
We evaluate our method on a wide range of classification datasets.
arXiv Detail & Related papers (2023-03-23T06:33:06Z) - Few-Shot Object Detection via Variational Feature Aggregation [32.34871873486389]
We propose a meta-learning framework with two novel feature aggregation schemes.
We first present a Class-Agnostic Aggregation (CAA) method, where the query and support features can be aggregated regardless of their categories.
We then propose a Variational Feature Aggregation (VFA) method, which encodes support examples into class-level support features.
arXiv Detail & Related papers (2023-01-31T04:58:21Z) - An Upper Bound for the Distribution Overlap Index and Its Applications [18.481370450591317]
This paper proposes an easy-to-compute upper bound for the overlap index between two probability distributions.
The proposed bound shows its value in one-class classification and domain shift analysis.
Our work shows significant promise toward broadening the applications of overlap-based metrics.
arXiv Detail & Related papers (2022-12-16T20:02:03Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Learning-From-Disagreement: A Model Comparison and Visual Analytics
Framework [21.055845469999532]
We propose a learning-from-disagreement framework to visually compare two classification models.
Specifically, we train a discriminator to learn from the disagreed instances.
We interpret the trained discriminator with the SHAP values of different meta-features.
arXiv Detail & Related papers (2022-01-19T20:15:35Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.