FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
- URL: http://arxiv.org/abs/2503.22985v1
- Date: Sat, 29 Mar 2025 06:20:12 GMT
- Title: FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
- Authors: Zhengyi Zhao, Shubo Zhang, Zezhong Wang, Bin Liang, Binyang Li, Kam-Fai Wong,
- Abstract summary: We propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question.<n>Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries.<n>Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions.
- Score: 18.213334065233465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
Related papers
- Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs [52.405085773954596]
We find that large language models (LLMs) tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones.
This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately.
Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy.
arXiv Detail & Related papers (2025-04-30T18:48:06Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.
We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.
For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - Critical Thinking: Which Kinds of Complexity Govern Optimal Reasoning Length? [72.70486097967124]
We formalize a framework using deterministic finite automata (DFAs)
We show that there exists an optimal amount of reasoning tokens such that the probability of producing a correct solution is maximized.
We then demonstrate an implication of these findings: being able to predict the optimal number of reasoning tokens for new problems and filtering out non-optimal length answers results in consistent accuracy improvements.
arXiv Detail & Related papers (2025-04-02T17:45:58Z) - DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models [31.189242663680695]
This paper introduces Difficulty-Adaptive Slow-Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought(CoT) based on problem difficulty.<n>Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking while preserving reasoning accuracy on complex problems.
arXiv Detail & Related papers (2025-03-06T14:23:06Z) - SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models [4.328173053224842]
This paper introduces SQuARE, a novel prompting technique designed to improve reasoning through a self-interrogation paradigm.<n>Building upon CoT frameworks, SQuARE prompts models to generate and resolve multiple auxiliary questions before tackling the main query.<n>Our evaluations, conducted with Llama 3 and GPT-4o models across multiple question-answering datasets, demonstrate that SQuARE significantly surpasses traditional CoT prompts and existing rephrase-and-respond methods.
arXiv Detail & Related papers (2025-02-13T15:07:20Z) - STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering [8.525847131940031]
Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question.
Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts.
We propose STOC-TOT, a tree-of-thought reasoning prompting method with constrained decoding for MHQA.
arXiv Detail & Related papers (2024-07-04T07:17:53Z) - Distilling Reasoning Ability from Large Language Models with Adaptive Thinking [54.047761094420174]
Chain of thought finetuning (cot-finetuning) aims to endow small language models (SLM) with reasoning ability to improve their performance towards specific tasks.
Most existing cot-finetuning methods adopt a pre-thinking mechanism, allowing the SLM to generate a rationale before providing an answer.
This mechanism enables SLM to analyze and think about complex questions, but it also makes answer correctness highly sensitive to minor errors in rationale.
We propose a robust post-thinking mechanism to generate answers before rationale.
arXiv Detail & Related papers (2024-04-14T07:19:27Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-thought (CoT) prompting is a popular in-context learning approach for large language models (LLMs)
This paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales.
arXiv Detail & Related papers (2023-12-07T20:36:10Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.