論文の概要: Buyer-Initiated Auction Mechanism for Data Redemption in Machine Unlearning
- arxiv url: http://arxiv.org/abs/2503.23001v2
- Date: Tue, 01 Apr 2025 04:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 10:23:23.492229
- Title: Buyer-Initiated Auction Mechanism for Data Redemption in Machine Unlearning
- Title(参考訳): 機械学習におけるデータ償還のためのバイヤー開始型オークション機構
- Authors: Bin Han, Di Feng, Jie Wang, Hans D. Schotten,
- Abstract要約: 人工知能(AI)の急速な成長はプライバシーの懸念を引き起こしている。
カリフォルニア州消費者プライバシ法(CCPA)のような主要な規制
データ償還のための買い手主導型オークション機構を提案する。
- 参考スコア(独自算出の注目度): 10.43572220941666
- License:
- Abstract: The rapid growth of artificial intelligence (AI) has raised privacy concerns over user data, leading to regulations like the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA). With the essential toolbox provided by machine unlearning, AI service providers are now able to remove user data from their trained models as well as the training datasets, so as to comply with such regulations. However, extensive data redemption can be costly and degrade model accuracy. To balance the cost of unlearning and the privacy protection, we propose a buyer-initiated auction mechanism for data redemption, enabling the service provider to purchase data from willing users with appropriate compensation. This approach does not require the server to have any a priori knowledge about the users' privacy preference, and provides an efficient solution for maximizing the social welfare in the investigated problem.
- Abstract(参考訳): 人工知能(AI)の急速な成長は、ユーザデータに対するプライバシー上の懸念を高め、General Data Protection Regulation(GDPR)やCalifornia Consumer Privacy Act(CCPA)などの規制につながった。
機械学習によって提供される必須のツールボックスによって、AIサービスプロバイダは、トレーニングされたモデルとトレーニングデータセットからユーザデータを削除して、そのような規則に従うことが可能になる。
しかし、広範なデータ償却はコストがかかり、モデルの精度が低下する可能性がある。
未学習のコストとプライバシ保護のバランスをとるために,サービス提供者が適切な報酬で有望なユーザからデータを購入することができるように,データ償還のためのバイヤー主導のオークション機構を提案する。
このアプローチでは,ユーザのプライバシ選好に関する事前知識をサーバに必要とせず,調査対象の社会的福祉を最大化するための効率的なソリューションを提供する。
関連論文リスト
- Towards Data Governance of Frontier AI Models [0.0]
私たちは、フロンティアAIモデルに対して、データが新たなガバナンス能力を実現する方法について検討する。
データは非リバルで、しばしば非排除可能で、容易に複製可能で、ますます合成可能になっている。
データサプライチェーンに沿ってキーアクターをターゲットにした一連のポリシー機構を提案する。
論文 参考訳(メタデータ) (2024-12-05T02:37:51Z) - Wasserstein Markets for Differentially-Private Data [1.4266656344673316]
データ市場は、幅広いアクセスを可能にすると同時に、適切なプライバシーとユーティリティのトレードオフを決定する手段を提供する。
既存のデータ市場フレームワークでは、信頼できるサードパーティが高価なバリュエーションを実行するか、あるいはデータ価値の性質を把握できないかのいずれかが必要です。
本稿では,個人差分データに対するワッサーシュタイン距離に基づく評価機構とそれに対応する調達機構を提案する。
論文 参考訳(メタデータ) (2024-12-03T17:40:26Z) - Privacy-Preserving Intrusion Detection using Convolutional Neural Networks [0.25163931116642785]
顧客のプライベートデータに対して分析サービスを提供するモデルオーナのユースケースについて検討する。
データに関する情報はアナリストに公開されず,モデルに関する情報は顧客にリークされない。
プライバシ保護技術を用いた畳み込みニューラルネットワークに基づく攻撃検知システムを構築した。
論文 参考訳(メタデータ) (2024-04-15T09:56:36Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
我々は、言語モデルを利用した知的エージェントが外部参加者に代わって情報を売買する、オープンソースのシミュレートされたデジタルマーケットプレースを紹介した。
このマーケットプレースを実現する中心的なメカニズムはエージェントの二重機能であり、特権情報の品質を評価する能力を持つと同時に、忘れる能力も備えている。
適切に行動するためには、エージェントは合理的な判断をし、生成されたサブクエリを通じて市場を戦略的に探索し、購入した情報から回答を合成する必要がある。
論文 参考訳(メタデータ) (2024-03-21T14:48:37Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Towards a User Privacy-Aware Mobile Gaming App Installation Prediction
Model [0.8602553195689513]
本研究では,モバイルゲームアプリのインストールを需要側プラットフォームの観点から予測するプロセスについて検討する。
プライバシ保護とモデルパフォーマンスのトレードオフについて検討する。
プライバシーを意識したモデルは依然として重要な能力を保っていると結論付けている。
論文 参考訳(メタデータ) (2023-02-07T09:14:59Z) - Certified Data Removal in Sum-Product Networks [78.27542864367821]
収集したデータの削除は、データのプライバシを保証するのに不十分であることが多い。
UnlearnSPNは、訓練された総生産ネットワークから単一データポイントの影響を取り除くアルゴリズムである。
論文 参考訳(メタデータ) (2022-10-04T08:22:37Z) - Preference-Based Privacy Trading [19.23266277956912]
本稿では, 単純化された売り手ブローカー市場における新たな選好関数入札手法を用いて, オリゴポリーデータ取引市場に対する規制付き効率的・非効率な経済メカニズムの設計を提案する。
我々の手法は、ある妥協レベルまで(グループ化された消費者、すなわちアプリ、レベルにおいて)不均一なプライバシ保護の制約を保ち、同時に機関の情報要求(ブローカーを介して)を満たす。
論文 参考訳(メタデータ) (2020-12-10T07:03:10Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。