論文の概要: Language Models Can Reduce Asymmetry in Information Markets
- arxiv url: http://arxiv.org/abs/2403.14443v1
- Date: Thu, 21 Mar 2024 14:48:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:49:29.249328
- Title: Language Models Can Reduce Asymmetry in Information Markets
- Title(参考訳): 言語モデルによる情報市場における非対称性の低減
- Authors: Nasim Rahaman, Martin Weiss, Manuel Wüthrich, Yoshua Bengio, Li Erran Li, Chris Pal, Bernhard Schölkopf,
- Abstract要約: 我々は、言語モデルを利用した知的エージェントが外部参加者に代わって情報を売買する、オープンソースのシミュレートされたデジタルマーケットプレースを紹介した。
このマーケットプレースを実現する中心的なメカニズムはエージェントの二重機能であり、特権情報の品質を評価する能力を持つと同時に、忘れる能力も備えている。
適切に行動するためには、エージェントは合理的な判断をし、生成されたサブクエリを通じて市場を戦略的に探索し、購入した情報から回答を合成する必要がある。
- 参考スコア(独自算出の注目度): 100.38786498942702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses the buyer's inspection paradox for information markets. The paradox is that buyers need to access information to determine its value, while sellers need to limit access to prevent theft. To study this, we introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants. The central mechanism enabling this marketplace is the agents' dual capabilities: they not only have the capacity to assess the quality of privileged information but also come equipped with the ability to forget. This ability to induce amnesia allows vendors to grant temporary access to proprietary information, significantly reducing the risk of unauthorized retention while enabling agents to accurately gauge the information's relevance to specific queries or tasks. To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information. Concretely, our experiments (a) uncover biases in language models leading to irrational behavior and evaluate techniques to mitigate these biases, (b) investigate how price affects demand in the context of informational goods, and (c) show that inspection and higher budgets both lead to higher quality outcomes.
- Abstract(参考訳): 本研究は、情報市場における買い手の検査パラドックスに対処する。
パラドックスは、買い手はその価値を決定するために情報にアクセスする必要があり、売り手は盗難を防ぐためにアクセスを制限する必要があることである。
そこで我々は,言語モデルを利用した知的エージェントが,外部参加者に代わって情報を売買・販売する,オープンソースのシミュレート・デジタル・マーケットプレースを紹介した。
このマーケットプレースを実現する中心的なメカニズムはエージェントの二重機能であり、それらは特権情報の品質を評価する能力を持つだけでなく、忘れる能力も備えている。
このアムネシアを誘発する能力により、ベンダーはプロプライエタリな情報への一時的なアクセスを許可することができ、許可されていない保持のリスクを著しく低減し、エージェントは特定のクエリやタスクに対する情報の関連性を正確に評価することができる。
適切に行動するためには、エージェントは合理的な判断をし、生成されたサブクエリを通じて市場を戦略的に探索し、購入した情報から回答を合成する必要がある。
具体的には、我々の実験
(a)不合理な行動につながる言語モデルのバイアスを明らかにし、これらのバイアスを軽減する技術を評価する。
ロ 情報商品の文脈において、物価が需要にどう影響するか、及び
(c) 検査と高い予算の両方がより高い品質の成果をもたらすことを示す。
関連論文リスト
- MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives [0.3069335774032178]
本稿では,フェデレート学習アーキテクチャに基づくトランザクションフレームワークを提案し,販売者選択アルゴリズムとインセンティブ補償機構を設計する。
具体的には、グラデーション類似性とシェープリーアルゴリズムを用いて販売者の貢献度を正確に評価する。
トレーニング後、販売者のトレーニングへの参加に応じて公正な補償が行われる。
論文 参考訳(メタデータ) (2024-10-10T03:50:20Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - ChatShop: Interactive Information Seeking with Language Agents [16.879814917881895]
新しい情報を戦略的に求める欲求と能力は 人間の学習に欠かせないものです
我々は,言語エージェントが戦略的探索を行う能力をテストするために設計された,人気のあるWebショッピングタスクを分析した。
提案課題は,エージェントが情報を探究し,徐々に蓄積する能力を効果的に評価できることを示す。
論文 参考訳(メタデータ) (2024-04-15T16:35:41Z) - Federated Learning Incentive Mechanism under Buyers' Auction Market [2.316580879469592]
オークションベースのフェデレートラーニング(AFL)は、利己的なデータコンシューマとデータオーナ間のオープンなコラボレーションを可能にする。
我々は、購入者の市場における価格変動を説明するために、調達オークションの枠組みに適応する。
信頼性とデータ品質の高いクライアントを選択し、外部からの攻撃を防ぐために、ブロックチェーンベースの評判メカニズムを利用する。
論文 参考訳(メタデータ) (2023-09-10T16:09:02Z) - Equilibrium of Data Markets with Externality [5.383900608313559]
私たちは、売り手が固定価格を投稿し、買い手は売り手から自由に購入できる現実世界のデータ市場をモデル化します。
ここで重要な要素は、データ購入によって互いに負の外部性バイヤーが引き起こされることだ。
我々は、取引コストを通じて介入するプラットフォームが、強力な福祉保証を備えた純粋な均衡につながることを証明している。
論文 参考訳(メタデータ) (2023-02-16T00:57:49Z) - Augmented cross-selling through explainable AI -- a case from energy
retailing [0.0]
エネルギー小売店の顧客220,185件のデータを分析し、最大86%の正当性(AUC)でクロス購入を予測し、XAI法SHAPが実際の購入者に対する説明を提供することを示す。
さらに,情報システム,XAI,関係マーケティングにおける研究の意義について概説する。
論文 参考訳(メタデータ) (2022-08-24T09:51:52Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。