Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
- URL: http://arxiv.org/abs/2503.23002v1
- Date: Sat, 29 Mar 2025 07:47:21 GMT
- Title: Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
- Authors: Qingmei Wang, Fanmeng Wang, Bing Su, Hongteng Xu,
- Abstract summary: We learn structure-enhanced TPPs with the help of Gromov-Wasserstein (GW) regularization.<n>In large-scale applications, we sample the kernel matrix and implement the regularization as a Gromov-Wasserstein (GW) discrepancy term.<n>The TPPs learned through this method result in clustered sequence embeddings and demonstrate competitive predictive and clustering performance.
- Score: 31.23290588877332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world event sequences are often generated by different temporal point processes (TPPs) and thus have clustering structures. Nonetheless, in the modeling and prediction of event sequences, most existing TPPs ignore the inherent clustering structures of the event sequences, leading to the models with unsatisfactory interpretability. In this study, we learn structure-enhanced TPPs with the help of Gromov-Wasserstein (GW) regularization, which imposes clustering structures on the sequence-level embeddings of the TPPs in the maximum likelihood estimation framework.In the training phase, the proposed method leverages a nonparametric TPP kernel to regularize the similarity matrix derived based on the sequence embeddings. In large-scale applications, we sample the kernel matrix and implement the regularization as a Gromov-Wasserstein (GW) discrepancy term, which achieves a trade-off between regularity and computational efficiency.The TPPs learned through this method result in clustered sequence embeddings and demonstrate competitive predictive and clustering performance, significantly improving the model interpretability without compromising prediction accuracy.
Related papers
- Consistent Amortized Clustering via Generative Flow Networks [6.9158153233702935]
We introduce GFNCP, a novel framework for amortized clustering.<n> GFNCP is formulated as a Generative Flow Network with a shared energy-based parametrization of policy and reward.<n>We show that the flow matching conditions are equivalent to consistency of the clustering posterior under marginalization.
arXiv Detail & Related papers (2025-02-26T17:30:52Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
We propose a novel structural entropy-guided probabilistic coding model, named SEPC.<n>We incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss.<n> Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC.
arXiv Detail & Related papers (2024-12-12T00:37:53Z) - Approximate learning of parsimonious Bayesian context trees [0.0]
The proposed framework is tested on synthetic and real-world data examples.
It outperforms existing sequence models when fitted to real protein sequences and honeypot computer terminal sessions.
arXiv Detail & Related papers (2024-07-27T11:50:40Z) - Negative-Binomial Randomized Gamma Markov Processes for Heterogeneous
Overdispersed Count Time Series [34.31866715010829]
We propose a negative-binomial-randomized gamma Markov process, which improves the predictive performance of the proposed dynamical system.
We also develop methods to estimate both factor-structured and graph-structured transition dynamics, which enable us to infer more explainable latent structure.
arXiv Detail & Related papers (2024-02-29T09:46:47Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Controlling the Complexity and Lipschitz Constant improves polynomial
nets [55.121200972539114]
We derive new complexity bounds for the set of Coupled CP-Decomposition (CCP) and Nested Coupled CP-decomposition (NCP) models of Polynomial Nets.
We propose a principled regularization scheme that we evaluate experimentally in six datasets and show that it improves the accuracy as well as the robustness of the models to adversarial perturbations.
arXiv Detail & Related papers (2022-02-10T14:54:29Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Cluster Regularization via a Hierarchical Feature Regression [0.0]
This paper proposes a novel cluster-based regularization - the hierarchical feature regression (HFR)
It mobilizes insights from the domains of machine learning and graph theory to estimate parameters along a supervised hierarchical representation of the predictor set.
An application to the prediction of economic growth is used to illustrate the HFR's effectiveness in an empirical setting.
arXiv Detail & Related papers (2021-07-10T13:03:01Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
We focus on methods that regularize the model posterior difference between clean and noisy inputs.
We generalize the posterior differential regularization to the family of $f$-divergences.
Our experiments show that regularizing the posterior differential with $f$-divergence can result in well-improved model robustness.
arXiv Detail & Related papers (2020-10-23T19:58:01Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.