Cluster Regularization via a Hierarchical Feature Regression
- URL: http://arxiv.org/abs/2107.04831v1
- Date: Sat, 10 Jul 2021 13:03:01 GMT
- Title: Cluster Regularization via a Hierarchical Feature Regression
- Authors: Johann Pfitzinger
- Abstract summary: This paper proposes a novel cluster-based regularization - the hierarchical feature regression (HFR)
It mobilizes insights from the domains of machine learning and graph theory to estimate parameters along a supervised hierarchical representation of the predictor set.
An application to the prediction of economic growth is used to illustrate the HFR's effectiveness in an empirical setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction tasks with high-dimensional nonorthogonal predictor sets pose a
challenge for least squares based fitting procedures. A large and productive
literature exists, discussing various regularized approaches to improving the
out-of-sample robustness of parameter estimates. This paper proposes a novel
cluster-based regularization - the hierarchical feature regression (HFR) -,
which mobilizes insights from the domains of machine learning and graph theory
to estimate parameters along a supervised hierarchical representation of the
predictor set, shrinking parameters towards group targets. The method is
innovative in its ability to estimate optimal compositions of predictor groups,
as well as the group targets endogenously. The HFR can be viewed as a
supervised factor regression, with the strength of shrinkage governed by a
penalty on the extent of idiosyncratic variation captured in the fitting
process. The method demonstrates good predictive accuracy and versatility,
outperforming a panel of benchmark regularized estimators across a diverse set
of simulated regression tasks, including dense, sparse and grouped data
generating processes. An application to the prediction of economic growth is
used to illustrate the HFR's effectiveness in an empirical setting, with
favorable comparisons to several frequentist and Bayesian alternatives.
Related papers
- Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification [0.0]
This article presents the conformal prediction framework that provides valid statistical guarantees on the predictive performance of any black box prediction machine.
The framework is exposed with a focus on its practical aspects and special attention accorded to the Adaptive Prediction Sets (APS) approach.
To tackle this shortcoming, group-conditional conformal approaches are presented.
arXiv Detail & Related papers (2023-08-29T08:02:41Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Orthogonal Series Estimation for the Ratio of Conditional Expectation
Functions [2.855485723554975]
This chapter develops the general framework for estimation and inference on conditional expectation functions (CEFR)
We derive the pointwise and uniform results for estimation and inference on CEFR, including the validity of the Gaussian bootstrap.
We apply the proposed method to estimate the causal effect of the 401(k) program on household assets.
arXiv Detail & Related papers (2022-12-26T13:01:17Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Counterfactual Explanations for Arbitrary Regression Models [8.633492031855655]
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation.
Our method is a globally convergent search algorithm with support for arbitrary regression models and constraints like feature sparsity and actionable recourse.
arXiv Detail & Related papers (2021-06-29T09:53:53Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based uncertainty set for selecting grouped variables under perturbations.
We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and establish the grouping effect of our estimator.
We show that our formulation produces an interpretable and parsimonious model that encourages sparsity at a group level.
arXiv Detail & Related papers (2020-06-10T22:32:52Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.