A Retrieval-Augmented Knowledge Mining Method with Deep Thinking LLMs for Biomedical Research and Clinical Support
- URL: http://arxiv.org/abs/2503.23029v1
- Date: Sat, 29 Mar 2025 09:56:42 GMT
- Title: A Retrieval-Augmented Knowledge Mining Method with Deep Thinking LLMs for Biomedical Research and Clinical Support
- Authors: Yichun Feng, Jiawei Wang, Ruikun He, Lu Zhou, Yixue Li,
- Abstract summary: We introduce Integrated and Progressive Retrieval-Augmented Reasoning (IP-RAR) to enhance retrieval accuracy and knowledge reasoning.<n>IP-RAR maximizes information recall through Integrated Reasoning-based Retrieval and refines knowledge via Progressive Reasoning-based Generation.<n>This framework helps doctors efficiently integrate treatment evidence for personalized medication plans.
- Score: 4.663954774358363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs and large language models (LLMs) are key tools for biomedical knowledge integration and reasoning, facilitating structured organization of scientific articles and discovery of complex semantic relationships. However, current methods face challenges: knowledge graph construction is limited by complex terminology, data heterogeneity, and rapid knowledge evolution, while LLMs show limitations in retrieval and reasoning, making it difficult to uncover cross-document associations and reasoning pathways. To address these issues, we propose a pipeline that uses LLMs to construct a biomedical knowledge graph (BioStrataKG) from large-scale articles and builds a cross-document question-answering dataset (BioCDQA) to evaluate latent knowledge retrieval and multi-hop reasoning. We then introduce Integrated and Progressive Retrieval-Augmented Reasoning (IP-RAR) to enhance retrieval accuracy and knowledge reasoning. IP-RAR maximizes information recall through Integrated Reasoning-based Retrieval and refines knowledge via Progressive Reasoning-based Generation, using self-reflection to achieve deep thinking and precise contextual understanding. Experiments show that IP-RAR improves document retrieval F1 score by 20\% and answer generation accuracy by 25\% over existing methods. This framework helps doctors efficiently integrate treatment evidence for personalized medication plans and enables researchers to analyze advancements and research gaps, accelerating scientific discovery and decision-making.
Related papers
- A Review on Scientific Knowledge Extraction using Large Language Models in Biomedical Sciences [1.8308043661908204]
This paper reviews the state-of-the-art applications of large language models (LLMs) in the biomedical domain.
LLMs demonstrate remarkable potential, but significant challenges remain, including issues related to hallucinations, contextual understanding, and the ability to generalize.
We aim to improve access to medical literature and facilitate meaningful discoveries in healthcare.
arXiv Detail & Related papers (2024-12-04T18:26:13Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - BioRAG: A RAG-LLM Framework for Biological Question Reasoning [14.05505988436551]
We introduce BioRAG, a novel Retrieval-Augmented Generation (RAG) with the Large Language Models (LLMs) framework.
Our approach starts with parsing, indexing, and segmenting an extensive collection of 22 million scientific papers as the basic knowledge, followed by training a specialized embedding model tailored to this domain.
For queries requiring the most current information, BioRAGs deconstruct the question and employs an iterative retrieval process incorporated with the search engine for step-by-step reasoning.
arXiv Detail & Related papers (2024-08-02T08:37:03Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
Large language models (LLMs) are transforming the way information is retrieved with vast amounts of knowledge being summarized and presented.
LLMs are prone to highlight the most frequently seen pieces of information from the training set and to neglect the rare ones.
We introduce a novel information-retrieval method that leverages a knowledge graph to downsample these clusters and mitigate the information overload problem.
arXiv Detail & Related papers (2024-02-19T18:31:11Z) - HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses [20.635793525894872]
We develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework to improve the accuracy and reliability of Large Language Models (LLMs)
Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs.
Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability.
arXiv Detail & Related papers (2023-12-26T04:49:56Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Don't Ignore Dual Logic Ability of LLMs while Privatizing: A
Data-Intensive Analysis in Medical Domain [19.46334739319516]
We study how the dual logic ability of LLMs is affected during the privatization process in the medical domain.
Our results indicate that incorporating general domain dual logic data into LLMs not only enhances LLMs' dual logic ability but also improves their accuracy.
arXiv Detail & Related papers (2023-09-08T08:20:46Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.