論文の概要: OncoReg: Medical Image Registration for Oncological Challenges
- arxiv url: http://arxiv.org/abs/2503.23179v2
- Date: Tue, 01 Apr 2025 08:44:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 10:23:25.816858
- Title: OncoReg: Medical Image Registration for Oncological Challenges
- Title(参考訳): OncoReg: オンコロジーチャレンジのための医用画像登録
- Authors: Wiebke Heyer, Yannic Elser, Lennart Berkel, Xinrui Song, Xuanang Xu, Pingkun Yan, Xi Jia, Jinming Duan, Zi Li, Tony C. W. Mok, BoWen LI, Christian Staackmann, Christoph Großbröhmer, Lasse Hansen, Alessa Hering, Malte M. Sieren, Mattias P. Heinrich,
- Abstract要約: この作業は、OncoReg Challengeの背後にある方法論とデータについて詳述する。
コンペのエントリーと結果の包括的分析を提供する。
この登録タスクでは、特徴抽出が重要な役割を担っていることが判明した。
- 参考スコア(独自算出の注目度): 19.639166936443146
- License:
- Abstract: In modern cancer research, the vast volume of medical data generated is often underutilised due to challenges related to patient privacy. The OncoReg Challenge addresses this issue by enabling researchers to develop and validate image registration methods through a two-phase framework that ensures patient privacy while fostering the development of more generalisable AI models. Phase one involves working with a publicly available dataset, while phase two focuses on training models on a private dataset within secure hospital networks. OncoReg builds upon the foundation established by the Learn2Reg Challenge by incorporating the registration of interventional cone-beam computed tomography (CBCT) with standard planning fan-beam CT (FBCT) images in radiotherapy. Accurate image registration is crucial in oncology, particularly for dynamic treatment adjustments in image-guided radiotherapy, where precise alignment is necessary to minimise radiation exposure to healthy tissues while effectively targeting tumours. This work details the methodology and data behind the OncoReg Challenge and provides a comprehensive analysis of the competition entries and results. Findings reveal that feature extraction plays a pivotal role in this registration task. A new method emerging from this challenge demonstrated its versatility, while established approaches continue to perform comparably to newer techniques. Both deep learning and classical approaches still play significant roles in image registration, with the combination of methods - particularly in feature extraction - proving most effective.
- Abstract(参考訳): 現代のがん研究では、大量の医療データが患者プライバシに関する課題のために、しばしば利用されていない。
OncoReg Challengeは、より一般的なAIモデルの開発を促進しながら、患者のプライバシを保証する2フェーズフレームワークを通じて、画像登録方法の開発と検証を可能にすることで、この問題に対処する。
フェーズ1は公開データセット、フェーズ2はセキュアな病院ネットワーク内のプライベートデータセットのトレーニングモデルに焦点を当てる。
OncoRegは、介入円錐線CT(CBCT)の登録を標準計画ファンビームCT(FBCT)画像に組み込むことで、Learner2Reg Challengeによって確立された基盤の上に構築されている。
正確な画像登録は、腫瘍を効果的に標的とし、健康な組織への放射線被曝を最小限に抑えるために正確なアライメントが必要である画像誘導放射線療法における動的治療調整において、腫瘍学において重要である。
この研究は、OncoReg Challengeの背後にある方法論とデータを詳述し、コンペのエントリーと結果に関する包括的な分析を提供する。
この登録タスクでは、特徴抽出が重要な役割を担っていることが判明した。
この課題から生まれた新しい手法は、その汎用性を実証し、確立されたアプローチは、新しい技術に相容れない性能を保ち続けている。
ディープラーニングと古典的アプローチはどちらも、画像登録において重要な役割を担い、特に特徴抽出における手法の組み合わせは、最も効果的であることが証明されている。
関連論文リスト
- CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
本稿では,レプロシー患者のRGB創傷画像の拡張コレクションであるCO2Wounds-V2データセットについて紹介する。
医療分野における画像処理アルゴリズムの開発とテストを強化することを目的としている。
論文 参考訳(メタデータ) (2024-08-20T13:21:57Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
本研究は、スタックド・ホアーグラス・ネットワーク(SHGN)と統合されたコンディショナル・ジェネレーション・アドバイザリアル・ネットワーク(C-GAN)の革新的な応用を紹介する。
我々は、複雑な画像データセットに適用されるディープラーニングモデルに共通するオーバーフィッティングの問題に、回転とスケーリングを通じてデータを増大させることで対処する。
血管内超音波(IVUS)画像において,L1とL2再構成損失を併用したハイブリッド損失関数を導入する。
論文 参考訳(メタデータ) (2024-07-17T23:23:09Z) - Pancreatic Tumor Segmentation as Anomaly Detection in CT Images Using Denoising Diffusion Models [4.931603088067152]
本研究は, 膵腫瘍検出に対する新しいアプローチとして, デノナイズ拡散法を用いて, 弱い監督異常検出を応用した手法を提案する。
本手法は, 複雑なトレーニングプロトコルやセグメンテーションマスクを必要とせずに, 画像のシームレスな翻訳を可能にする。
本研究は, 膵癌の生存率の低さを認識し, 医療セグメント化作業における拡散モデルの効率を活用するための継続的な研究の必要性を強調した。
論文 参考訳(メタデータ) (2024-06-04T16:38:11Z) - VISION: Toward a Standardized Process for Radiology Image Management at the National Level [3.793492459789475]
我々は,米国退役軍人局(VA)電子健康記録データベースに関連付けられた,信頼できる放射線画像の収集を行った経験について述べる。
主な洞察は、臨床から研究可能な環境への画像転送に必要な特定の手順を明らかにすることである。
論文 参考訳(メタデータ) (2024-04-29T16:30:24Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - End-to-end autoencoding architecture for the simultaneous generation of
medical images and corresponding segmentation masks [3.1133049660590615]
ハミルトン変分オートエンコーダ(HVAE)に基づくエンドツーエンドアーキテクチャを提案する。
従来の変分オートエンコーダ(VAE)と比較して後部分布近似が向上する。
本手法は, 生成的逆境条件より優れ, 画像品質の向上を示す。
論文 参考訳(メタデータ) (2023-11-17T11:56:53Z) - CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark
Model for Rectal Cancer Segmentation [8.728236864462302]
CT画像の直腸癌セグメンテーションは、タイムリーな臨床診断、放射線治療、経過観察において重要な役割を担っている。
これらの障害は直腸の複雑な解剖学的構造と直腸癌の鑑別診断の困難から生じる。
これらの課題に対処するため,本研究では,正常直腸と癌直腸の両方にピクセルレベルのアノテーションを付加した,新しい大規模直腸癌CT画像データセットCAREを導入する。
また,U-SAMと命名された新しい癌病変セグメンテーションベンチマークモデルを提案する。
このモデルは、迅速な情報を取り入れることで、腹部器官の複雑な解剖学的構造によって引き起こされる課題に対処するように設計されている。
論文 参考訳(メタデータ) (2023-08-16T10:51:27Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
ほとんどの深層学習に基づく登録法は、所望の変形場が全世界的に滑らかで連続的であると仮定する。
本稿では、より優れた登録性能とリアルな変形場を得るために、弱い教師付き深部不連続保存画像登録ネットワーク(DDIR)を提案する。
本研究では, 心臓磁気共鳴(MR)画像の登録実験において, 登録精度を大幅に向上し, より現実的な変形を予測できることを実証した。
論文 参考訳(メタデータ) (2021-07-09T13:35:59Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy Laser Photocoagulation はツイン・ツー・ツイン・トランスフュージョン症候群(TTTS)の治療に広く用いられている治療法である
これにより、プロシージャ時間と不完全アブレーションが増加し、持続的なTTTSが生じる可能性がある。
コンピュータ支援による介入は、ビデオモザイクによって胎児の視野を広げ、船体ネットワークのより良い視覚化を提供することによって、これらの課題を克服するのに役立つかもしれない。
本稿では,長期フェトスコープビデオからドリフトフリーモザイクを作成することを目的とした,胎児環境のための汎用的でロバストなセマンティックセマンティックセグメンテーションとビデオモザイクアルゴリズムを開発するための大規模マルチセントデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:14:27Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。