論文の概要: VISION: Toward a Standardized Process for Radiology Image Management at the National Level
- arxiv url: http://arxiv.org/abs/2404.18842v1
- Date: Mon, 29 Apr 2024 16:30:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 12:58:45.692155
- Title: VISION: Toward a Standardized Process for Radiology Image Management at the National Level
- Title(参考訳): VISION:全国レベルでの放射線画像管理の標準化プロセスに向けて
- Authors: Kathryn Knight, Ioana Danciu, Olga Ovchinnikova, Jacob Hinkle, Mayanka Chandra Shekar, Debangshu Mukherjee, Eileen McAllister, Caitlin Rizy, Kelly Cho, Amy C. Justice, Joseph Erdos, Peter Kuzmak, Lauren Costa, Yuk-Lam Ho, Reddy Madipadga, Suzanne Tamang, Ian Goethert,
- Abstract要約: 我々は,米国退役軍人局(VA)電子健康記録データベースに関連付けられた,信頼できる放射線画像の収集を行った経験について述べる。
主な洞察は、臨床から研究可能な環境への画像転送に必要な特定の手順を明らかにすることである。
- 参考スコア(独自算出の注目度): 3.793492459789475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The compilation and analysis of radiological images poses numerous challenges for researchers. The sheer volume of data as well as the computational needs of algorithms capable of operating on images are extensive. Additionally, the assembly of these images alone is difficult, as these exams may differ widely in terms of clinical context, structured annotation available for model training, modality, and patient identifiers. In this paper, we describe our experiences and challenges in establishing a trusted collection of radiology images linked to the United States Department of Veterans Affairs (VA) electronic health record database. We also discuss implications in making this repository research-ready for medical investigators. Key insights include uncovering the specific procedures required for transferring images from a clinical to a research-ready environment, as well as roadblocks and bottlenecks in this process that may hinder future efforts at automation.
- Abstract(参考訳): 放射線画像の編集と解析は、研究者に多くの課題をもたらす。
膨大な量のデータと、画像上で操作できるアルゴリズムの計算的ニーズは広範囲に及んでいる。
さらに、これらの画像の組み立ては、臨床的文脈、モデルトレーニング、モダリティ、患者識別子に利用できる構造的アノテーションという点で大きく異なる可能性があるため、単独で行うことは困難である。
本稿では,米国退役軍人局(VA)電子健康記録データベースに関連付けられた放射線画像の信頼できる収集を行う上での経験と課題について述べる。
また,このレポジトリを医療研究者に活用する上での意義についても論じる。
主な洞察は、臨床から研究可能な環境に画像を転送するために必要な特定の手順を明らかにすること、そしてこのプロセスにおける障害やボトルネックが、自動化における将来の努力を妨げる可能性がある。
関連論文リスト
- Evidence Is All You Need: Ordering Imaging Studies via Language Model Alignment with the ACR Appropriateness Criteria [22.897900474995012]
我々は,エビデンスに基づくガイドラインに沿う患者に対して,画像研究を推奨することで,言語モデルを活用するための枠組みを導入する。
患者の"ワンライナー"シナリオの新たなデータセットを公開し、実験をパワーアップし、最先端の言語モデルを最適化して、画像の順序付けにおいて臨床医と同等の精度を達成する。
論文 参考訳(メタデータ) (2024-09-27T23:13:17Z) - CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
本稿では,レプロシー患者のRGB創傷画像の拡張コレクションであるCO2Wounds-V2データセットについて紹介する。
医療分野における画像処理アルゴリズムの開発とテストを強化することを目的としている。
論文 参考訳(メタデータ) (2024-08-20T13:21:57Z) - Content-Based Image Retrieval for Multi-Class Volumetric Radiology Images: A Benchmark Study [0.6249768559720122]
非医用画像上の事前訓練された教師なしモデルからの埋め込みに対して、医用画像上の事前訓練された教師なしモデルからの埋め込みをベンチマークした。
ボリューム画像の検索には,テキストマッチングにインスパイアされた遅延インタラクションのランク付け手法を採用する。
論文 参考訳(メタデータ) (2024-05-15T13:34:07Z) - RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text
Supervision [44.00149519249467]
言語による事前学習は、画像から意味論的に意味のある特徴を抽出する貴重な方法であることが証明されている。
生体画像エンコーダRAD-DINOについて検討した。
論文 参考訳(メタデータ) (2024-01-19T17:02:17Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
医用画像のテキストレポートの代替としてアイトラッキングを提案する。
医用画像を読み,診断する際に放射線科医の視線を追跡することにより,その視覚的注意と臨床的理由を理解することができる。
対照的な学習フレームワークのためのプラグイン・アンド・プレイモジュールとして,McGIP (McGIP) を導入した。
論文 参考訳(メタデータ) (2023-12-11T02:27:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images [10.616065108433798]
本稿では,胸部X線画像を同時に分類し,入力データから影響領域を識別するマルチタスク・ビジョン・トランスフォーマ(MVC)を提案する。
提案手法はVision Transformer上に構築されているが,マルチタスク設定で学習能力を拡張している。
論文 参考訳(メタデータ) (2023-09-30T15:52:18Z) - Implicit Neural Representation in Medical Imaging: A Comparative Survey [3.478921293603811]
Inlicit Neural representations (INR) はシーン再構成やコンピュータグラフィックスにおいて強力なパラダイムとして注目されている。
本調査は,医療画像の分野でのINRモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2023-07-30T06:39:25Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。