Synthetic Art Generation and DeepFake Detection A Study on Jamini Roy Inspired Dataset
- URL: http://arxiv.org/abs/2503.23226v1
- Date: Sat, 29 Mar 2025 21:12:16 GMT
- Title: Synthetic Art Generation and DeepFake Detection A Study on Jamini Roy Inspired Dataset
- Authors: Kushal Agrawal, Romi Banerjee,
- Abstract summary: This study takes a unique approach by examining diffusion-based generative models in the context of Indian art.<n>To explore this, we fine-tuned Stable Diffusion 3 and used techniques like ControlNet and IPAdapter to generate realistic images.<n>We employed various qualitative and quantitative methods, such as Fourier domain assessments and autocorrelation metrics, to uncover subtle differences between synthetic images and authentic pieces.
- Score: 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intersection of generative AI and art is a fascinating area that brings both exciting opportunities and significant challenges, especially when it comes to identifying synthetic artworks. This study takes a unique approach by examining diffusion-based generative models in the context of Indian art, specifically focusing on the distinctive style of Jamini Roy. To explore this, we fine-tuned Stable Diffusion 3 and used techniques like ControlNet and IPAdapter to generate realistic images. This allowed us to create a new dataset that includes both real and AI-generated artworks, which is essential for a detailed analysis of what these models can produce. We employed various qualitative and quantitative methods, such as Fourier domain assessments and autocorrelation metrics, to uncover subtle differences between synthetic images and authentic pieces. A key takeaway from recent research is that existing methods for detecting deepfakes face considerable challenges, especially when the deepfakes are of high quality and tailored to specific cultural contexts. This highlights a critical gap in current detection technologies, particularly in light of the challenges identified above, where high-quality and culturally specific deepfakes are difficult to detect. This work not only sheds light on the increasing complexity of generative models but also sets a crucial foundation for future research aimed at effective detection of synthetic art.
Related papers
- State-of-the-art AI-based Learning Approaches for Deepfake Generation and Detection, Analyzing Opportunities, Threading through Pros, Cons, and Future Prospects [0.0]
Deepfake technologies are designed to create incredibly lifelike facial imagery and video content.<n>This review paper meticulously investigates the most recent developments in deepfake generation and detection, including around 400 publications.
arXiv Detail & Related papers (2025-01-02T03:19:21Z) - Knowledge-Guided Prompt Learning for Deepfake Facial Image Detection [54.26588902144298]
We propose a knowledge-guided prompt learning method for deepfake facial image detection.
Specifically, we retrieve forgery-related prompts from large language models as expert knowledge to guide the optimization of learnable prompts.
Our proposed approach notably outperforms state-of-the-art methods.
arXiv Detail & Related papers (2025-01-01T02:18:18Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Colour and Brush Stroke Pattern Recognition in Abstract Art using Modified Deep Convolutional Generative Adversarial Networks [0.0]
This paper describes the study of a wide distribution of abstract paintings using Generative Adrial Neural Networks(GAN)<n>The challenge lies in developing an efficient GAN architecture that overcomes common training pitfalls.<n>This paper introduces a modified-DCGAN (mDCGAN) specifically designed for high-quality artwork generation.
arXiv Detail & Related papers (2024-03-27T09:35:56Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Deepfake Style Transfer Mixture: a First Forensic Ballistics Study on
Synthetic Images [0.0]
This paper describes a study on detecting how many times a digital image has been processed by a generative architecture for style transfer.
In order to address and study accurately forensic ballistics on deepfake images, some mathematical properties of style-transfer operations were investigated.
arXiv Detail & Related papers (2022-03-18T13:11:54Z) - Partially fake it till you make it: mixing real and fake thermal images
for improved object detection [29.13557322147509]
We show the performance of the proposed system in the context of object detection in thermal videos.
Our single-modality detector achieves state-of-the-art results on the FLIR ADAS dataset.
arXiv Detail & Related papers (2021-06-25T12:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.