Enhancing 3D Gaussian Splatting Compression via Spatial Condition-based Prediction
- URL: http://arxiv.org/abs/2503.23337v1
- Date: Sun, 30 Mar 2025 06:41:43 GMT
- Title: Enhancing 3D Gaussian Splatting Compression via Spatial Condition-based Prediction
- Authors: Jingui Ma, Yang Hu, Luyang Tang, Jiayu Yang, Yongqi Zhai, Ronggang Wang,
- Abstract summary: We introduce the prediction technique into the anchor-based Gaussian representation to effectively reduce the bit rate.<n>Our framework still achieves a bit rate savings of 24.42 percent.
- Score: 24.061525432639943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, 3D Gaussian Spatting (3DGS) has gained widespread attention in Novel View Synthesis (NVS) due to the remarkable real-time rendering performance. However, the substantial cost of storage and transmission of vanilla 3DGS hinders its further application (hundreds of megabytes or even gigabytes for a single scene). Motivated by the achievements of prediction in video compression, we introduce the prediction technique into the anchor-based Gaussian representation to effectively reduce the bit rate. Specifically, we propose a spatial condition-based prediction module to utilize the grid-captured scene information for prediction, with a residual compensation strategy designed to learn the missing fine-grained information. Besides, to further compress the residual, we propose an instance-aware hyper prior, developing a structure-aware and instance-aware entropy model. Extensive experiments demonstrate the effectiveness of our prediction-based compression framework and each technical component. Even compared with SOTA compression method, our framework still achieves a bit rate savings of 24.42 percent. Code is to be released!
Related papers
- CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation [60.712165339762116]
CompGS++ is a novel framework that leverages compact Gaussian primitives to achieve accurate 3D modeling.
Our design is based on the principle of eliminating redundancy both between and within primitives.
Our implementation will be made publicly available on GitHub to facilitate further research.
arXiv Detail & Related papers (2025-04-17T15:33:01Z) - HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression [23.015728369640136]
3D Gaussian Splatting (3DGS) is popular for 3D modeling and image rendering, but this creates big challenges in data storage and transmission.<n>We propose a hybrid entropy model for 3DGS data compression, which comprises two primary components, a hyperprior network and an autoregressive network.<n>Our method achieves about 40% average reduction in size while maintaining the rendering quality over our baseline method and achieving state-of-the-art compression results.
arXiv Detail & Related papers (2024-11-27T16:08:59Z) - A Hierarchical Compression Technique for 3D Gaussian Splatting Compression [23.785131033155924]
3D Gaussian Splatting (GS) demonstrates excellent rendering quality and generation speed in novel view synthesis.<n>Current 3D GS compression research primarily focuses on developing more compact scene representations.<n>We propose a Hierarchical GS Compression (HGSC) technique to address this gap.
arXiv Detail & Related papers (2024-11-11T13:34:24Z) - Fast Feedforward 3D Gaussian Splatting Compression [55.149325473447384]
3D Gaussian Splatting (FCGS) is an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass.<n>FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods.
arXiv Detail & Related papers (2024-10-10T15:13:08Z) - ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model [77.71796503321632]
We introduce a context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS.
Our work pioneers the context model in the anchor level for 3DGS representation, yielding an impressive size reduction of over 100 times compared to vanilla 3DGS and 15 times compared to the most recent state-of-the-art work Scaffold-GS.
arXiv Detail & Related papers (2024-05-31T09:23:39Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression [55.6351304553003]
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis.
We propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation.
Our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75times$ compared to vanilla 3DGS.
arXiv Detail & Related papers (2024-03-21T16:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.