Fixing Outside the Box: Uncovering Tactics for Open-Source Security Issue Management
- URL: http://arxiv.org/abs/2503.23357v1
- Date: Sun, 30 Mar 2025 08:24:58 GMT
- Title: Fixing Outside the Box: Uncovering Tactics for Open-Source Security Issue Management
- Authors: Lyuye Zhang, Jiahui Wu, Chengwei Liu, Kaixuan Li, Xiaoyu Sun, Lida Zhao, Chong Wang, Yang Liu,
- Abstract summary: We conduct a comprehensive study on the taxonomy of vulnerability remediation tactics (RT) in OSS projects.<n>We developed a hierarchical taxonomy of 44 distinct RT and evaluated their effectiveness and costs.<n>Our findings highlight a significant reliance on community-driven strategies, like using alternative libraries and bypassing vulnerabilities.
- Score: 9.990683064304207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the rapidly evolving landscape of software development, addressing security vulnerabilities in open-source software (OSS) has become critically important. However, existing research and tools from both academia and industry mainly relied on limited solutions, such as vulnerable version adjustment and adopting patches, to handle identified vulnerabilities. However, far more flexible and diverse countermeasures have been actively adopted in the open-source communities. A holistic empirical study is needed to explore the prevalence, distribution, preferences, and effectiveness of these diverse strategies. To this end, in this paper, we conduct a comprehensive study on the taxonomy of vulnerability remediation tactics (RT) in OSS projects and investigate their pros and cons. This study addresses this oversight by conducting a comprehensive empirical analysis of 21,187 issues from GitHub, aiming to understand the range and efficacy of remediation tactics within the OSS community. We developed a hierarchical taxonomy of 44 distinct RT and evaluated their effectiveness and costs. Our findings highlight a significant reliance on community-driven strategies, like using alternative libraries and bypassing vulnerabilities, 44% of which are currently unsupported by cutting-edge tools. Additionally, this research exposes the community's preferences for certain fixing approaches by analyzing their acceptance and the reasons for rejection. It also underscores a critical gap in modern vulnerability databases, where 54% of CVEs lack fixing suggestions, a gap that can be significantly mitigated by leveraging the 93% of actionable solutions provided through GitHub issues.
Related papers
- Generating Mitigations for Downstream Projects to Neutralize Upstream Library Vulnerability [8.673798395456185]
Third-party libraries are essential in software development as they prevent the need for developers to recreate existing functionalities.
upgrading dependencies to secure versions is not feasible to neutralize vulnerabilities without patches or in projects with specific version requirements.
Both the state-of-the-art automatic vulnerability repair and automatic program repair methods fail to address this issue.
arXiv Detail & Related papers (2025-03-31T16:20:29Z) - SoK: Understanding Vulnerabilities in the Large Language Model Supply Chain [8.581429744090316]
This study systematically analyzes 529 vulnerabilities reported across 75 prominent projects spanning 13 lifecycle stages.<n>The findings show that vulnerabilities are concentrated in the application (50.3%) and model (42.7%) layers.<n>While 56.7% of the vulnerabilities have available fixes, 8% of these patches are ineffective, resulting in recurring vulnerabilities.
arXiv Detail & Related papers (2025-02-18T03:22:38Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training.
Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs.
This survey aims to summarize up-to-date MIA methods in both attacks and defenses.
arXiv Detail & Related papers (2024-11-15T08:09:28Z) - A Mixed-Methods Study of Open-Source Software Maintainers On Vulnerability Management and Platform Security Features [6.814841205623832]
This paper investigates the perspectives of OSS maintainers on vulnerability management and platform security features.<n>We find that supply chain mistrust and lack of automation for vulnerability management are the most challenging.<n> barriers to adopting platform security features include a lack of awareness and the perception that they are not necessary.
arXiv Detail & Related papers (2024-09-12T00:15:03Z) - Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects [0.11999555634662631]
This study investigates vulnerabilities in dependencies of sampled open-source software (OSS) projects.
We have identified common issues in outdated or unmaintained dependencies, that pose significant security risks.
Results suggest that reducing the number of direct dependencies and prioritizing well-established libraries with strong security records are effective strategies for enhancing the software security landscape.
arXiv Detail & Related papers (2024-08-26T13:46:48Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - A Relevance Model for Threat-Centric Ranking of Cybersecurity Vulnerabilities [0.29998889086656577]
The relentless process of tracking and remediating vulnerabilities is a top concern for cybersecurity professionals.
We provide a framework for vulnerability management specifically focused on mitigating threats using adversary criteria derived from MITRE ATT&CK.
Our results show an average 71.5% - 91.3% improvement towards the identification of vulnerabilities likely to be targeted and exploited by cyber threat actors.
arXiv Detail & Related papers (2024-06-09T23:29:12Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Progressive Graph Learning for Open-Set Domain Adaptation [48.758366879597965]
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions.
In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data.
We introduce an end-to-end Progressive Graph Learning framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift.
arXiv Detail & Related papers (2020-06-22T09:10:34Z) - Explore, Discover and Learn: Unsupervised Discovery of State-Covering
Skills [155.11646755470582]
'Explore, Discover and Learn' (EDL) is an alternative approach to information-theoretic skill discovery.
We show that EDL offers significant advantages, such as overcoming the coverage problem, reducing the dependence of learned skills on the initial state, and allowing the user to define a prior over which behaviors should be learned.
arXiv Detail & Related papers (2020-02-10T10:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.