論文の概要: Evolutionary Prompt Optimization Discovers Emergent Multimodal Reasoning Strategies in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2503.23503v1
- Date: Sun, 30 Mar 2025 16:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.154354
- Title: Evolutionary Prompt Optimization Discovers Emergent Multimodal Reasoning Strategies in Vision-Language Models
- Title(参考訳): 進化的プロンプト最適化による視覚・言語モデルにおける創発的マルチモーダル推論戦略の解明
- Authors: Sid Bharthulwar, John Rho, Katrina Brown,
- Abstract要約: 本稿では,視覚言語モデルにおけるプロンプトを最適化するフレームワークを提案する。
このアプローチにより、言語モデルは、進化世代間で進歩的な問題解決手法を独立して発見できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a framework for optimizing prompts in vision-language models to elicit multimodal reasoning without model retraining. Using an evolutionary algorithm to guide prompt updates downstream of visual tasks, our approach improves upon baseline prompt-updating algorithms, which lack evolution-style "survival of the fittest" iteration. Crucially, we find this approach enables the language model to independently discover progressive problem-solving techniques across several evolution generations. For example, the model reasons that to "break down" visually complex spatial tasks, making a tool call to a Python interpreter to perform tasks (such as cropping, image segmentation, or saturation changes) would improve performance significantly. Our experimentation shows that explicitly evoking this "tool calling" call, via system-level XML $...\texttt{<tool>} ... \texttt{</tool>}...$ tags, can effectively flag Python interpreter access for the same language model to generate relevant programs, generating advanced multimodal functionality. This functionality can be crystallized into a system-level prompt that induces improved performance at inference time, and our experimentation suggests up to $\approx 50\%$ relative improvement across select visual tasks. Downstream performance is trained and evaluated across subtasks from MathVista, M3CoT, and GeoBench-VLM datasets. Importantly, our approach shows that evolutionary prompt optimization guides language models towards self-reasoning discoveries, which result in improved zero-shot generalization across tasks.
- Abstract(参考訳): 本稿では,視覚言語モデルにおけるプロンプトを最適化するフレームワークを提案する。
進化的アルゴリズムを用いて、視覚タスクの下流で更新を誘導し、進化スタイルの「最も適した」反復を欠いたベースラインのプロンプト更新アルゴリズムを改善する。
重要なことに、この手法は言語モデルが進化世代間で進歩的な問題解決技術を独立して発見することを可能にする。
例えば、視覚的に複雑な空間タスクを"ブレークダウン"する理由は、Pythonインタプリタにタスクを実行するためのツールコール(トリミング、イメージセグメンテーション、飽和化変更など)をすることで、パフォーマンスが大幅に向上するからだ。
私たちの実験では、システムレベルのXML $...\texttt{<tool>} ... \texttt{</tool>}...$タグを通じて、この"tool call"コールを明示的に呼び出すことで、Pythonインタープリタが同じ言語モデルに対して効果的にフラグを付けることができ、関連するプログラムを生成し、高度なマルチモーダル機能を生成します。
この機能は、推論時に性能が向上するシステムレベルのプロンプトに結晶化することができ、実験により、選択された視覚タスク間での相対的な改善が最大$\approx 50\%であることを示す。
下流のパフォーマンスは、MathVista、M3CoT、GeoBench-VLMデータセットのサブタスクでトレーニングされ、評価される。
重要なことは、進化的プロンプト最適化が言語モデルを自己推論的な発見へと導くことを示し、それによってタスク間のゼロショットの一般化が改善されることである。
関連論文リスト
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
マルチモーダル大言語モデル(MLLM)のための内適応アーキテクチャを導入する。
このアーキテクチャは、大きな言語モデル内の様々な深さで複数のマルチモーダルアダプタを組み込んで、テキスト指向のトランスフォーマー層との直接の相互作用を容易にする。
大規模な整列データを必要とする従来のフリーズ言語モデルとは異なり、提案アーキテクチャは小規模データセットにおいて優れた性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-23T08:10:13Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
大規模視覚言語モデル(LVLM)は、視覚的質問応答および推論タスクにおいて印象的な結果を得た。
既存の手法は、しばしば外部モデルやデータに依存し、制御不能で不安定なアライメント結果をもたらす。
本稿では,外部依存を伴わない視覚的・言語的モダリティアライメントを向上させる自己改善フレームワークSIMAを提案する。
論文 参考訳(メタデータ) (2024-05-24T23:09:27Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - De-fine: Decomposing and Refining Visual Programs with Auto-Feedback [75.62712247421146]
De-fineは、複雑なタスクを単純なサブタスクに分解し、オートフィードバックを通じてプログラムを洗練する、トレーニング不要のフレームワークである。
様々な視覚的タスクに対する我々の実験は、De-fineがより堅牢なプログラムを生成することを示している。
論文 参考訳(メタデータ) (2023-11-21T06:24:09Z) - Bridging the Language Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs [15.911445732909849]
大規模言語モデル(LLM)は様々なドメインに革命をもたらしたが、それでも非ラテン語スクリプトや低リソース言語に苦戦している。
本稿では,実行時にクエリ毎のプロンプト戦略,埋め込みモデル,LLMを最適化する,新しい動的学習手法を提案する。
提案手法では,事前学習モデルに比べて10~15%の言語性能向上と4倍のゲインを達成できた。
論文 参考訳(メタデータ) (2023-05-28T14:48:38Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
本稿では,Pareto Optimalityの観点から,符号化言語情報とタスクパフォーマンスの動的関係について検討する。
我々は、機械翻訳と言語モデリングという2つの一般的なNLPタスクの実験を行い、様々な言語情報とタスクパフォーマンスの関係について検討する。
実験結果から,NLPタスクには構文情報が有用であるのに対して,より構文情報の符号化が必ずしも優れたパフォーマンスをもたらすとは限らないことが示唆された。
論文 参考訳(メタデータ) (2022-03-29T19:03:10Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
本稿では、損失関数幾何学のレンズを通して多言語最適化のブラックボックスを覗き込もうとする。
最適化軌道に沿って測定された勾配類似性は重要な信号であり、言語近接とよく相関している。
そこで我々はGradient Vaccineというシンプルでスケーラブルな最適化手法を考案した。
論文 参考訳(メタデータ) (2020-10-12T17:26:34Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。