論文の概要: Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints
- arxiv url: http://arxiv.org/abs/2503.23550v1
- Date: Sun, 30 Mar 2025 18:27:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.185109
- Title: Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints
- Title(参考訳): 分子指紋を用いた薬物と薬物の相互作用予測におけるモデルオーバーコンプレックスの対応
- Authors: Manel Gil-Sorribes, Alexis Molina,
- Abstract要約: 薬物と薬物の相互作用(DDI)の正確な予測は、医薬品研究と臨床安全性に不可欠である。
最近のディープラーニングモデルは、しばしば高い計算コストとデータセット間の限定的な一般化に悩まされる。
本研究では,Morgan fingerprints (S), graph-based embeddings from graph convolutional network (GCNs), transformer- derived embeddings from MoLFormer integrated into a straight neural network。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety. Recent deep learning models often suffer from high computational costs and limited generalization across datasets. In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (MFPS), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network. We benchmark our implementation on DrugBank DDI splits and a drug-drug affinity (DDA) dataset from the Food and Drug Administration. MFPS along with MoLFormer and GCN representations achieve competitive performance across tasks, even in the more challenging leak-proof split, highlighting the sufficiency of simple molecular representations. Moreover, we are able to identify key molecular motifs and structural patterns relevant to drug interactions via gradient-based analyses using the representations under study. Despite these results, dataset limitations such as insufficient chemical diversity, limited dataset size, and inconsistent labeling impact robust evaluation and challenge the need for more complex approaches. Our work provides a meaningful baseline and emphasizes the need for better dataset curation and progressive complexity scaling.
- Abstract(参考訳): 薬物と薬物の相互作用(DDI)の正確な予測は、医薬品研究と臨床安全性に不可欠である。
最近のディープラーニングモデルは、しばしば高い計算コストとデータセット間の限定的な一般化に悩まされる。
本研究では,モーガンフィンガープリント (MFPS) やグラフ畳み込みネットワーク (GCN) からのグラフベースの埋め込み,MoLFormer からのトランスフォーマー由来の埋め込みなどの分子表現を用いた,より単純かつ効果的なアプローチについて検討する。
我々は、FDAのDDIスプリットとドラッグドラッグ親和性(DDA)データセットをベンチマークした。
MFPSとMoLFormerおよびGCN表現は、単純な分子表現の十分性を強調しながら、より難解な漏れ防止分割であっても、タスク間での競合性能を達成する。
さらに, 薬物相互作用に関連する重要な分子のモチーフと構造パターンを, その表現を用いて, 勾配に基づく分析により同定することができる。
これらの結果にもかかわらず、不十分な化学多様性、限られたデータセットサイズ、一貫性のないラベル付けといったデータセットの制限は、ロバストな評価に影響を与え、より複雑なアプローチの必要性に挑戦する。
私たちの仕事は意味のあるベースラインを提供し、より良いデータセットキュレーションとプログレッシブな複雑性スケーリングの必要性を強調しています。
関連論文リスト
- MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
そこで本研究では,戦略的サンプリングを通じて原因・影響関係を識別する能動的学習手法を提案する。
この方法は、より大きな化学空間の最も多くの情報を符号化できるデータセットの最小サブセットを特定する。
その後、同定された因果関係を利用して体系的な介入を行い、モデルがこれまで遭遇していなかった化学空間における設計タスクを最適化する。
論文 参考訳(メタデータ) (2024-04-05T17:15:48Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
米国における薬物依存の激化は、革新的な治療戦略の緊急の必要性を浮き彫りにしている。
本研究は,オピオイドおよびコカイン依存症治療の薬物再服用候補を探索するための,革新的で厳格な戦略に着手した。
論文 参考訳(メタデータ) (2023-12-03T04:01:38Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
論文 参考訳(メタデータ) (2020-04-23T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。