論文の概要: Bridging conformal prediction and scenario optimization
- arxiv url: http://arxiv.org/abs/2503.23561v2
- Date: Tue, 01 Apr 2025 19:22:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 09:56:35.501009
- Title: Bridging conformal prediction and scenario optimization
- Title(参考訳): ブリッジング共形予測とシナリオ最適化
- Authors: Niall O'Sullivan, Licio Romao, Kostas Margellos,
- Abstract要約: 制約違反の確率について,適切なスコア関数と予測器マップを選択して,よく知られた境界を回復する方法を示す。
この結果は,共形予測とシナリオ最適化の理論的橋渡しとなる。
- 参考スコア(独自算出の注目度): 3.4000567392487127
- License:
- Abstract: Conformal prediction and scenario optimization constitute two important classes of statistical learning frameworks to certify decisions made using data. They have found numerous applications in control theory, machine learning and robotics. Despite intense research in both areas, and apparently similar results, a clear connection between these two frameworks has not been established. By focusing on the so-called vanilla conformal prediction, we show rigorously how to choose appropriate score functions and set predictor map to recover well-known bounds on the probability of constraint violation associated with scenario programs. We also show how to treat ranking of nonconformity scores as a one-dimensional scenario program with discarded constraints, and use such connection to recover vanilla conformal prediction guarantees on the validity of the set predictor. We also capitalize on the main developments of the scenario approach, and show how we could analyze calibration conditional conformal prediction under this lens. Our results establish a theoretical bridge between conformal prediction and scenario optimization.
- Abstract(参考訳): コンフォーマル予測とシナリオ最適化は、データを用いて決定を行うための統計学習フレームワークの重要な2つのクラスを構成する。
彼らは制御理論、機械学習、ロボット工学に多くの応用を見出した。
両分野での激しい研究と、明らかに類似した結果にもかかわらず、この2つのフレームワークの間に明確な関連性は確立されていない。
いわゆる「バニラ共形予測」に焦点をあてて、適切なスコア関数の選択方法と、シナリオプログラムに関連する制約違反の確率について、よく知られた境界を復元する予測器マップを設定する方法について、厳密に示す。
また,非整合性スコアのランク付けを,制約を捨てた一次元シナリオプログラムとして扱う方法を示し,そのような接続を用いて,設定された予測器の有効性に関するバニラ共形予測を復元する。
また、シナリオアプローチの主な発展に乗じて、このレンズの下でキャリブレーション条件の共形予測を解析する方法を示す。
この結果は,共形予測とシナリオ最適化の理論的橋渡しとなる。
関連論文リスト
- Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
データ汚染環境における分割共形予測の堅牢性について検討する。
構築した集合のカバレッジと効率に及ぼす劣化したデータの影響を定量化する。
本稿では,汚染ロバスト・コンフォーマル予測(Contamination Robust Conformal Prediction)と呼ぶ分類設定の調整を提案する。
論文 参考訳(メタデータ) (2024-07-10T14:33:28Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
本稿では,これらの予測に対して有限サンプル妥当性条件付き予測間隔とともに,校正点予測を実現するための自己校正等式予測を提案する。
本手法は,モデルキャリブレーションによりキャリブレーション間隔効率を向上し,特徴条件の妥当性に対して実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-02-11T21:12:21Z) - Conformal prediction for frequency-severity modeling [1.4999444543328293]
本稿では,保険請求の予測間隔を構築するためのモデルに依存しない枠組みを提案する。
我々は2段階の周波数重大度モデリングの領域に共形予測を分割する手法を拡張した。
論文 参考訳(メタデータ) (2023-07-24T20:45:39Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Selective Ensembles for Consistent Predictions [19.154189897847804]
不整合は高い文脈では望ましくない。
この矛盾は、予測を超えて属性を特徴付けていることが示される。
我々は,選択的アンサンブルが低禁制率を維持しつつ,一貫した予測と特徴属性を達成することを証明した。
論文 参考訳(メタデータ) (2021-11-16T05:03:56Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。