Multi-Objective Optimization and Hyperparameter Tuning With Desirability Functions
- URL: http://arxiv.org/abs/2503.23595v1
- Date: Sun, 30 Mar 2025 21:16:41 GMT
- Title: Multi-Objective Optimization and Hyperparameter Tuning With Desirability Functions
- Authors: Thomas Bartz-Beielstein,
- Abstract summary: The Python package spotdesirability is available as part of the sequential parameter optimization framework.<n>Three examples are given that demonstrate how to use the desirability functions for classical optimization.
- Score: 0.5439020425819
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The goal of this article is to provide an introduction to the desirability function approach to multi-objective optimization (direct and surrogate model-based), and multi-objective hyperparameter tuning. This work is based on the paper by Kuhn (2016). It presents a `Python` implementation of Kuhn's `R` package `desirability`. The `Python` package `spotdesirability` is available as part of the `sequential parameter optimization` framework. After a brief introduction to the desirability function approach is presented, three examples are given that demonstrate how to use the desirability functions for classical optimization, surrogate-model based optimization, and hyperparameter tuning.
Related papers
- A Unified Gaussian Process for Branching and Nested Hyperparameter
Optimization [19.351804144005744]
In deep learning, tuning parameters with conditional dependence are common in practice.
New GP model accounts for the dependent structure among input variables through a new kernel function.
High prediction accuracy and better optimization efficiency are observed in a series of synthetic simulations and real data applications of neural networks.
arXiv Detail & Related papers (2024-01-19T21:11:32Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
arXiv Detail & Related papers (2023-08-01T04:46:58Z) - Bayesian Optimization with Informative Covariance [13.113313427848828]
We propose novel informative covariance functions for optimization, leveraging nonstationarity to encode preferences for certain regions of the search space.
We demonstrate that the proposed functions can increase the sample efficiency of Bayesian optimization in high dimensions, even under weak prior information.
arXiv Detail & Related papers (2022-08-04T15:05:11Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - A General Recipe for Likelihood-free Bayesian Optimization [115.82591413062546]
We propose likelihood-free BO (LFBO) to extend BO to a broader class of models and utilities.
LFBO directly models the acquisition function without having to separately perform inference with a probabilistic surrogate model.
We show that computing the acquisition function in LFBO can be reduced to optimizing a weighted classification problem.
arXiv Detail & Related papers (2022-06-27T03:55:27Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
We propose a novel Bayesian surrogate model to balance exploration with exploitation of the search space.
To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model.
To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret.
arXiv Detail & Related papers (2022-05-27T16:43:10Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - R-MBO: A Multi-surrogate Approach for Preference Incorporation in
Multi-objective Bayesian Optimisation [0.0]
We present an a-priori multi-surrogate approach to incorporate the desirable objective function values as the preferences of a decision-maker in multi-objective BO.
The results and comparison with the existing mono-surrogate approach on benchmark and real-world optimisation problems show the potential of the proposed approach.
arXiv Detail & Related papers (2022-04-27T19:58:26Z) - Pre-trained Gaussian Processes for Bayesian Optimization [24.730678780782647]
We propose a new pre-training based BO framework named HyperBO.
We show bounded posterior predictions and near-zero regrets for HyperBO without assuming the "ground truth" GP prior is known.
arXiv Detail & Related papers (2021-09-16T20:46:26Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Additive Tree-Structured Covariance Function for Conditional Parameter
Spaces in Bayesian Optimization [34.89735938765757]
We generalize the additive assumption to tree-structured functions.
By incorporating the structure information of parameter spaces and the additive assumption in the BO loop, we develop a parallel algorithm to optimize the acquisition function.
arXiv Detail & Related papers (2020-06-21T11:21:55Z) - Multi-Objective Hyperparameter Tuning and Feature Selection using Filter
Ensembles [0.8029049649310213]
We treat feature selection as a multi-objective optimization task.
First uses multi-objective model-based optimization.
Second is an evolutionary NSGA-II-based wrapper approach to feature selection.
arXiv Detail & Related papers (2019-12-30T13:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.