Multi-Objective Hyperparameter Tuning and Feature Selection using Filter
Ensembles
- URL: http://arxiv.org/abs/1912.12912v2
- Date: Thu, 13 Feb 2020 10:41:13 GMT
- Title: Multi-Objective Hyperparameter Tuning and Feature Selection using Filter
Ensembles
- Authors: Martin Binder, Julia Moosbauer, Janek Thomas, Bernd Bischl
- Abstract summary: We treat feature selection as a multi-objective optimization task.
First uses multi-objective model-based optimization.
Second is an evolutionary NSGA-II-based wrapper approach to feature selection.
- Score: 0.8029049649310213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Both feature selection and hyperparameter tuning are key tasks in machine
learning. Hyperparameter tuning is often useful to increase model performance,
while feature selection is undertaken to attain sparse models. Sparsity may
yield better model interpretability and lower cost of data acquisition, data
handling and model inference. While sparsity may have a beneficial or
detrimental effect on predictive performance, a small drop in performance may
be acceptable in return for a substantial gain in sparseness. We therefore
treat feature selection as a multi-objective optimization task. We perform
hyperparameter tuning and feature selection simultaneously because the choice
of features of a model may influence what hyperparameters perform well.
We present, benchmark, and compare two different approaches for
multi-objective joint hyperparameter optimization and feature selection: The
first uses multi-objective model-based optimization. The second is an
evolutionary NSGA-II-based wrapper approach to feature selection which
incorporates specialized sampling, mutation and recombination operators. Both
methods make use of parameterized filter ensembles.
While model-based optimization needs fewer objective evaluations to achieve
good performance, it incurs computational overhead compared to the NSGA-II, so
the preferred choice depends on the cost of evaluating a model on given data.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
arXiv Detail & Related papers (2023-08-01T04:46:58Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
We focus on exploring the effectiveness of multi-objective optimization strategies for parameter optimization in conjunction with deep neural networks.
The two methods are combined to provide valuable insights into the generation of predictions and analysis in multiple applications.
arXiv Detail & Related papers (2023-05-17T07:48:54Z) - Feature Selection for Classification with QAOA [11.516147824168732]
Feature selection is of great importance in Machine Learning, where it can be used to reduce the dimensionality of classification, ranking and prediction problems.
We consider in particular a quadratic feature selection problem that can be tackled with the Approximate Quantum Algorithm Optimization (QAOA), already employed in optimization.
In our experiments, we consider seven different real-world datasets with dimensionality up to 21 and run QAOA on both a quantum simulator and, for small datasets, the 7-qubit IBM (ibm-perth) quantum computer.
arXiv Detail & Related papers (2022-11-05T09:28:53Z) - The Role of Adaptive Optimizers for Honest Private Hyperparameter
Selection [12.38071940409141]
We show that standard composition tools outperform more advanced techniques in many settings.
We draw upon limiting behaviour of Adam in the DP setting to design a new and more efficient tool.
arXiv Detail & Related papers (2021-11-09T01:56:56Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Hyperparameter Selection for Subsampling Bootstraps [0.0]
A subsampling method like BLB serves as a powerful tool for assessing the quality of estimators for massive data.
The performance of the subsampling methods are highly influenced by the selection of tuning parameters.
We develop a hyperparameter selection methodology, which can be used to select tuning parameters for subsampling methods.
Both simulation studies and real data analysis demonstrate the superior advantage of our method.
arXiv Detail & Related papers (2020-06-02T17:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.