Causality-oriented robustness: exploiting general noise interventions
- URL: http://arxiv.org/abs/2307.10299v2
- Date: Sat, 22 Mar 2025 15:37:46 GMT
- Title: Causality-oriented robustness: exploiting general noise interventions
- Authors: Xinwei Shen, Peter Bühlmann, Armeen Taeb,
- Abstract summary: In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)<n>DRIG exploits general noise interventions in training data for robust predictions against unseen interventions.<n>We show that our framework includes anchor regression as a special case, and that it yields prediction models that protect against more diverse perturbations.
- Score: 4.64479351797195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since distribution shifts are common in real-world applications, there is a pressing need to develop prediction models that are robust against such shifts. Existing frameworks, such as empirical risk minimization or distributionally robust optimization, either lack generalizability for unseen distributions or rely on postulated distance measures. Alternatively, causality offers a data-driven and structural perspective to robust predictions. However, the assumptions necessary for causal inference can be overly stringent, and the robustness offered by such causal models often lacks flexibility. In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG), a method that exploits general noise interventions in training data for robust predictions against unseen interventions, and naturally interpolates between in-distribution prediction and causality. In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts. Furthermore, we show that our framework includes anchor regression as a special case, and that it yields prediction models that protect against more diverse perturbations. We establish finite-sample results and extend our approach to semi-supervised domain adaptation to further improve prediction performance. Finally, we empirically validate our methods on synthetic simulations and on single-cell and intensive health care datasets.
Related papers
- Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.
Our contribution is to provide the first general estimation technique for transportability problems.
We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction [5.38274042816001]
In observational data, the distribution shift is often driven by unobserved confounding factors.
This motivates us to study the domain adaptation problem with observational data.
We show a model that uses the learned lower-dimensional subspace can incur nearly ideal gap between target and source risk.
arXiv Detail & Related papers (2024-06-22T17:43:08Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance.
The prediction interval serves as a crucial tool for characterizing uncertainties induced by their underlying distribution.
We propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain.
arXiv Detail & Related papers (2024-05-16T17:55:42Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust prediction methods.
We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization.
We propose a general framework for distributional robustness with respect to intervention-induced distributions.
arXiv Detail & Related papers (2021-10-04T13:12:11Z) - Domain Conditional Predictors for Domain Adaptation [3.951376400628575]
We consider a conditional modeling approach in which predictions, in addition to being dependent on the input data, use information relative to the underlying data-generating distribution.
We argue that such an approach is more generally applicable than current domain adaptation methods.
arXiv Detail & Related papers (2021-06-25T22:15:54Z) - Regularizing towards Causal Invariance: Linear Models with Proxies [7.953401800573514]
We show that a single proxy can be used to create estimators that are prediction optimal under interventions of bounded strength.
We show how to extend these estimators to scenarios where additional information about the "test time" intervention is available during training.
arXiv Detail & Related papers (2021-03-03T15:39:35Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.