論文の概要: Interpretable Machine Learning in Physics: A Review
- arxiv url: http://arxiv.org/abs/2503.23616v1
- Date: Sun, 30 Mar 2025 22:44:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.20981
- Title: Interpretable Machine Learning in Physics: A Review
- Title(参考訳): 物理における解釈可能な機械学習
- Authors: Sebastian Johann Wetzel, Seungwoong Ha, Raban Iten, Miriam Klopotek, Ziming Liu,
- Abstract要約: 我々は、科学における中核研究として解釈可能な機械学習を確立することを目指している。
我々は、解釈可能性の異なる側面を分類し、解釈可能性と性能の両方の観点から機械学習モデルについて議論する。
我々は、物理学の多くのサブフィールドにまたがる、解釈可能な機械学習の最近の進歩を強調した。
- 参考スコア(独自算出の注目度): 10.77934040629518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is increasingly transforming various scientific fields, enabled by advancements in computational power and access to large data sets from experiments and simulations. As artificial intelligence (AI) continues to grow in capability, these algorithms will enable many scientific discoveries beyond human capabilities. Since the primary goal of science is to understand the world around us, fully leveraging machine learning in scientific discovery requires models that are interpretable -- allowing experts to comprehend the concepts underlying machine-learned predictions. Successful interpretations increase trust in black-box methods, help reduce errors, allow for the improvement of the underlying models, enhance human-AI collaboration, and ultimately enable fully automated scientific discoveries that remain understandable to human scientists. This review examines the role of interpretability in machine learning applied to physics. We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance, and explore the philosophical implications of interpretability in scientific inquiry. Additionally, we highlight recent advances in interpretable machine learning across many subfields of physics. By bridging boundaries between disciplines -- each with its own unique insights and challenges -- we aim to establish interpretable machine learning as a core research focus in science.
- Abstract(参考訳): 機械学習は、計算能力の進歩と実験やシミュレーションからの大きなデータセットへのアクセスによって実現される、さまざまな科学分野をますます変えつつある。
人工知能(AI)の能力が向上するにつれて、これらのアルゴリズムは人間の能力を超えた多くの科学的発見を可能にする。
科学の第一の目的は、私たちを取り巻く世界を理解することですから、科学的発見に機械学習を完全に活用するには、解釈可能なモデルが必要です。
成功した解釈はブラックボックスの手法の信頼を高め、エラーを減らし、基礎となるモデルの改善を可能にし、人間とAIのコラボレーションを強化し、究極的には人間の科学者にとって理解可能な完全自動化された科学的発見を可能にする。
本稿では,物理学に応用された機械学習における解釈可能性の役割について検討する。
我々は、解釈可能性の異なる側面を分類し、解釈可能性と性能の両方の観点から機械学習モデルについて議論し、科学的調査における解釈可能性の哲学的含意について考察する。
さらに、物理学の多くのサブフィールドにまたがる、解釈可能な機械学習の最近の進歩を強調した。
規律(それぞれ独自の洞察と課題を持つ)の境界をブリッジすることで、私たちは、科学における中核的な研究対象として解釈可能な機械学習を確立することを目指しています。
関連論文リスト
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
自律的なジェネラリスト科学者(AGS)の概念は、エージェントAIとエンボディロボットを組み合わせて、研究ライフサイクル全体を自動化している。
AGSは科学的発見に必要な時間と資源を大幅に削減することを目指している。
これらの自律的なシステムが研究プロセスにますます統合されるにつれて、科学的な発見が新しいスケーリング法則に従うかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2025-03-28T14:00:27Z) - A Perspective on Symbolic Machine Learning in Physical Sciences [10.091537548478655]
機械学習が非科学的分野に影響を与える速度は、物理科学のそれと相容れない。
シンボリック機械学習は、物理学における科学的発見のスピードアップにおいて、数値機械学習と同等かつ補完的なパートナーである。
論文 参考訳(メタデータ) (2025-02-25T09:02:02Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Interpretable and Explainable Machine Learning for Materials Science and
Chemistry [2.2175470459999636]
材料科学・化学における解釈可能性および説明可能性技術の応用を概説する。
材料科学における機械学習の解釈に関する様々な課題について論じる。
我々は、物質科学や化学問題における解釈可能性に恩恵をもたらす可能性のある、他の分野における多くのエキサイティングな展開を紹介します。
論文 参考訳(メタデータ) (2021-11-01T15:40:36Z) - Scientific intuition inspired by machine learning generated hypotheses [2.294014185517203]
私たちは、機械学習モデル自体が得る洞察と知識に焦点を移します。
決定木では, 化学や物理から, ビッグデータから人間の解釈可能な洞察を抽出するために, 勾配増進法を適用した。
数値を超える能力は、機械学習を使って概念理解の発見を加速する扉を開く。
論文 参考訳(メタデータ) (2020-10-27T12:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。