論文の概要: Finding Interest Needle in Popularity Haystack: Improving Retrieval by Modeling Item Exposure
- arxiv url: http://arxiv.org/abs/2503.23630v1
- Date: Mon, 31 Mar 2025 00:04:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:09.713964
- Title: Finding Interest Needle in Popularity Haystack: Improving Retrieval by Modeling Item Exposure
- Title(参考訳): Haystackにおける関心事の発見 : アイテム露光のモデル化による検索の改善
- Authors: Amit Jaspal, Rahul Agarwal,
- Abstract要約: 本稿では、アイテムの露出確率を明示的にモデル化し、推論時に検索ステージランキングを調整する、露出認識型検索スコアリング手法を提案する。
実世界のビデオレコメンデーションシステムにおけるオンラインA/B実験によるアプローチの有効性を検証し、一意に検索されたアイテムの25%増加と、過度な人気コンテンツの優位性の40%低下を実証した。
本研究は,検索段階で人気バイアスを緩和するためのスケーラブルでデプロイ可能なソリューションを構築し,バイアス認識のパーソナライゼーションのための新しいパラダイムを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recommender systems operate in closed feedback loops, where user interactions reinforce popularity bias, leading to over-recommendation of already popular items while under-exposing niche or novel content. Existing bias mitigation methods, such as Inverse Propensity Scoring (IPS) and Off- Policy Correction (OPC), primarily operate at the ranking stage or during training, lacking explicit real-time control over exposure dynamics. In this work, we introduce an exposure- aware retrieval scoring approach, which explicitly models item exposure probability and adjusts retrieval-stage ranking at inference time. Unlike prior work, this method decouples exposure effects from engagement likelihood, enabling controlled trade-offs between fairness and engagement in large-scale recommendation platforms. We validate our approach through online A/B experiments in a real-world video recommendation system, demonstrating a 25% increase in uniquely retrieved items and a 40% reduction in the dominance of over-popular content, all while maintaining overall user engagement levels. Our results establish a scalable, deployable solution for mitigating popularity bias at the retrieval stage, offering a new paradigm for bias-aware personalization.
- Abstract(参考訳): リコメンダシステムはクローズドなフィードバックループで動作し、ユーザインタラクションは人気バイアスを強化し、ニッチや新奇なコンテンツを過小評価しながら、既に人気の高いアイテムを過剰に推奨する。
Inverse Propensity Scoring (IPS) や Off- Policy Correction (OPC) のような既存のバイアス緩和手法は、主にランキング段階で、またはトレーニング中に運用され、露光ダイナミクスに対する明示的なリアルタイム制御が欠如している。
本研究では、アイテムの露出確率を明示的にモデル化し、推論時に検索ステージランキングを調整する、露出対応型検索スコアリング手法を提案する。
従来の作業とは異なり、この方法はエンゲージメント可能性から露出効果を分離し、大規模レコメンデーションプラットフォームにおけるフェアネスとエンゲージメントのトレードオフを制御可能にする。
実世界のビデオレコメンデーションシステムにおけるオンラインA/B実験によるアプローチの検証を行い、ユニークに検索されたアイテムの25%増加と過度なコンテンツの優位性の40%低下を実証し、全体のユーザエンゲージメントレベルを維持しながら、我々のアプローチを検証した。
本研究は,検索段階で人気バイアスを緩和するためのスケーラブルでデプロイ可能なソリューションを構築し,バイアス認識のパーソナライゼーションのための新しいパラダイムを提供する。
関連論文リスト
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
本稿では,従来のインタラクションからユーザフィードバックを学習する対話型パーソナライズドビジュアライゼーションレコメンデーション(PVisRec)システムを提案する。
よりインタラクティブで正確なレコメンデーションのために、PVisRec設定における文脈的半帯域であるHier-SUCBを提案する。
論文 参考訳(メタデータ) (2025-02-05T17:14:45Z) - ALBAR: Adversarial Learning approach to mitigate Biases in Action Recognition [52.537021302246664]
行動認識モデルは、しばしば背景バイアス(背景の手がかりに基づく行動の推測)と前景バイアス(主題の外観に依存する)に悩まされる。
本稿では,前景や背景のバイアスを,バイアス特性の専門知識を必要とせずに軽減する,新たな対人訓練手法であるALBARを提案する。
我々は,提案手法を確立された背景と前景のバイアスプロトコル上で評価し,新しい最先端のバイアスプロトコルを設定し,HMDB51では12%以上のデバイアス性能を向上した。
論文 参考訳(メタデータ) (2025-01-31T20:47:06Z) - Reducing Popularity Influence by Addressing Position Bias [0.0]
位置偏差は,フィードバックループを通じて位置偏差によって引き起こされる項目の人気を効果的に低減できることを示す。
ユーザのエンゲージメントや財務指標を損なうことなく、位置偏りがアソシエーション利用を著しく改善できることを示す。
論文 参考訳(メタデータ) (2024-12-11T21:16:37Z) - Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
人気アイテムの小さなセットが、高い相互作用率のために推奨結果を支配している。
この現象は、ニッチな興味のある人を無視しながら、メインストリームの趣味を持つユーザーに不当に利益をもたらす。
本稿では,推薦モデルのトレーニングプロセスに介入することで,この問題に対処するプロセス内アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-07T08:34:18Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
アイテムグループ間のバイアスドレコメンデーションは、システムに対するユーザの不満を引き起こすとともに、アイテムプロバイダの利益を脅かす可能性がある。
本研究の目的は,最先端の協調フィルタリング推薦アルゴリズムの出力における地理的起源と人気に関する新たなタイプの交叉バイアスを管理することである。
2つの実世界の映画と書籍のデータセットに関する大規模な実験は、アイテムの生産大陸に富んだものであり、提案アルゴリズムが精度と上記のバイアスの両タイプの間に合理的なバランスをとっていることを示している。
論文 参考訳(メタデータ) (2023-02-21T10:06:01Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
アルゴリズムをランク付けする偏見のない学習は、候補をアピールし、既に単一の分類ラベルを持つ多くのアプリケーションに適用されている。
本稿では,この課題に対処するための新しい非バイアス付きLTRアルゴリズムを提案する。
パブリックベンチマークデータセットと内部ライブトラフィックを用いた実験結果から,分類ラベルと連続ラベルのいずれにおいても提案手法の優れた結果が得られた。
論文 参考訳(メタデータ) (2021-11-25T06:04:59Z) - PipAttack: Poisoning Federated Recommender Systems forManipulating Item
Promotion [58.870444954499014]
一般的な実践は、分散化された連邦学習パラダイムの下でレコメンデーターシステムをサブスクライブすることである。
本稿では,対象項目の促進のために,フェデレートされたレコメンデータシステムをバックドア化するための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T06:48:35Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
本稿では,レコメンデーションシステムにおいて,ユーザのフィードバックループバイアスを修正するための系統的かつ動的手法を提案する。
本手法は,各ユーザの動的評価履歴の埋め込みを学習するためのディープラーニングコンポーネントを含む。
実世界のレコメンデーションシステムにおけるユーザフィードバックループバイアスの存在を実証的に検証した。
論文 参考訳(メタデータ) (2021-09-13T15:02:55Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。