Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
- URL: http://arxiv.org/abs/2503.23641v1
- Date: Mon, 31 Mar 2025 00:59:56 GMT
- Title: Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
- Authors: Arthur Castello B. de Oliveira, Leilei Cui, Eduardo D. Sontag,
- Abstract summary: This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI)<n>This work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies.
- Score: 0.3277163122167434
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
Related papers
- Nonconvex Optimization Framework for Group-Sparse Feedback Linear-Quadratic Optimal Control: Non-Penalty Approach [3.585860184121598]
We address the challenge of tuning the penalty parameter and the risk of introducing stationary points.<n>Our results enable direct group-sparse feedback design gains without resorting to certain assumptions.
arXiv Detail & Related papers (2025-07-26T09:50:21Z) - Some remarks on gradient dominance and LQR policy optimization [0.0]
Polyak-Lojasiewicz Inequality (PLI) is used to establish an exponential rate of convergence.<n>PLI-like conditions motivate the search for various generalized PLI-like conditions.<n>These generalizations are key to understanding the transient and effects of errors.
arXiv Detail & Related papers (2025-07-14T16:31:06Z) - Convergence and Sample Complexity of First-Order Methods for Agnostic Reinforcement Learning [66.4260157478436]
We study reinforcement learning in the policy learning setting.<n>The goal is to find a policy whose performance is competitive with the best policy in a given class of interest.
arXiv Detail & Related papers (2025-07-06T14:40:05Z) - Non-convex entropic mean-field optimization via Best Response flow [0.0]
We discuss the problem of minimizing non- functionals on the space probability measures, regularized by the relative entropy (KL) with respect to a fixed reference measure.<n>We show how to choose the regularizer, given the non functional, so that the Best Response becomes a contraction with respect to the $L1$Wasserstein distance.
arXiv Detail & Related papers (2025-05-28T18:22:08Z) - Convergence of Policy Mirror Descent Beyond Compatible Function Approximation [66.4260157478436]
We develop theoretical PMD general policy classes where we strictly assume a weaker variational dominance and obtain convergence to the best-in-class policy.
Our main notion leverages a novel notion induced by the local norm induced by the occupancy- gradient measure.
arXiv Detail & Related papers (2025-02-16T08:05:46Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces [10.045995853506222]
We study the global convergence of a Fisher-Rao policy gradient flow for infinite-horizon entropy-regularised Markov decision processes with Polish state and action space.
We establish the global well-posedness of the gradient flow and demonstrate its exponential convergence to the optimal policy.
arXiv Detail & Related papers (2023-10-04T16:41:36Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
We develop an analytical framework to characterize the set of optimal ReLU networks.
We establish conditions for the neuralization of ReLU networks to be continuous, and develop sensitivity results for ReLU networks.
arXiv Detail & Related papers (2023-05-31T18:48:16Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms.
We establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level.
arXiv Detail & Related papers (2023-05-30T12:58:39Z) - On the Optimization Landscape of Dynamic Output Feedback: A Case Study
for Linear Quadratic Regulator [12.255864026960403]
We show how the dLQR cost varies with the coordinate transformation of the dynamic controller and then derive the optimal transformation for a given observable stabilizing controller.
These results shed light on designing efficient algorithms for general decision-making problems with partially observed information.
arXiv Detail & Related papers (2022-09-12T06:43:35Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - The Geometry of Memoryless Stochastic Policy Optimization in
Infinite-Horizon POMDPs [0.0]
We consider the problem of finding the best memoryless policy for an infinite-horizon partially observable decision process.
We show that the discounted state-action frequencies and the expected cumulative reward are the functions of the policy, whereby the degree is determined by the degree of partial observability.
arXiv Detail & Related papers (2021-10-14T14:42:09Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Successive Convex Approximation Based Off-Policy Optimization for
Constrained Reinforcement Learning [12.523496806744946]
We propose a convex approximation based off-policy optimization (SCAOPO) algorithm to solve the general constrained reinforcement learning problem.
In spite of the time-varying state distribution and the bias incurred by the off-policy learning, the SCAOPO with a feasible initial point can still provably converge to a Karush-Kuhn-Tucker point.
arXiv Detail & Related papers (2021-05-26T13:52:39Z) - Variational Policy Gradient Method for Reinforcement Learning with
General Utilities [38.54243339632217]
In recent years, reinforcement learning systems with general goals beyond a cumulative sum of rewards have gained traction.
In this paper, we consider policy in Decision Problems, where the objective converges a general concave utility function.
We derive a new Variational Policy Gradient Theorem for RL with general utilities.
arXiv Detail & Related papers (2020-07-04T17:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.