GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs
- URL: http://arxiv.org/abs/2503.23713v1
- Date: Mon, 31 Mar 2025 04:28:37 GMT
- Title: GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs
- Authors: Priyanka Gautam, Balasubramaniam Natarajan, Sai Munikoti, S M Ferdous, Mahantesh Halappanavar,
- Abstract summary: We propose a learning-based approach integrating Graph Networks with Bidirectional Long Short-Term Memory (BiLSTM) models.<n>BiLSTM allows our model to analyze patterns from both past and future network states, ensuring adaptability to changes over time.<n>Our method is particularly effective in fields like viral marketing and social network analysis, where understanding temporal dynamics is crucial.
- Score: 3.3853959586196645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an age where information spreads rapidly across social media, effectively identifying influential nodes in dynamic networks is critical. Traditional influence maximization strategies often fail to keep up with rapidly evolving relationships and structures, leading to missed opportunities and inefficiencies. To address this, we propose a novel learning-based approach integrating Graph Neural Networks (GNNs) with Bidirectional Long Short-Term Memory (BiLSTM) models. This hybrid framework captures both structural and temporal dynamics, enabling accurate prediction of candidate nodes for seed set selection. The bidirectional nature of BiLSTM allows our model to analyze patterns from both past and future network states, ensuring adaptability to changes over time. By dynamically adapting to graph evolution at each time snapshot, our approach improves seed set calculation efficiency, achieving an average of 90% accuracy in predicting potential seed nodes across diverse networks. This significantly reduces computational overhead by optimizing the number of nodes evaluated for seed selection. Our method is particularly effective in fields like viral marketing and social network analysis, where understanding temporal dynamics is crucial.
Related papers
- Influence Maximization in Temporal Social Networks with a Cold-Start Problem: A Supervised Approach [16.047046903057225]
Influence Maximization (IM) in temporal graphs focuses on identifying influential "seeds" that are pivotal for maximizing network expansion.
We advocate defining these seeds through Influence Propagation Paths (IPPs)
Our focus lies in efficiently labeling IPPs and accurately predicting these seeds, while addressing the often-overlooked cold-start issue prevalent in temporal networks.
arXiv Detail & Related papers (2025-04-15T14:44:30Z) - Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts [18.590561557743477]
temporal graph neural networks (TGNNs) have been developed to predict dynamic node properties from a stream of emerging edges.
In this paper, we propose SPLASH, a simple yet powerful method for predicting node properties on edge streams under distribution shifts.
arXiv Detail & Related papers (2025-04-01T01:20:52Z) - ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.<n> experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
arXiv Detail & Related papers (2025-01-27T12:39:16Z) - Temporal Link Prediction Using Graph Embedding Dynamics [0.0]
Temporal link prediction in dynamic networks is of particular interest due to its potential for solving complex scientific and real-world problems.
Traditional approaches to temporal link prediction have focused on finding the aggregation of dynamics of the network as a unified output.
We propose a novel perspective on temporal link prediction by defining nodes as Newtonian objects and incorporating the concept of velocity to predict network dynamics.
arXiv Detail & Related papers (2024-01-15T07:35:29Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
Information-centric network (ICN) aims to proactively keep limited popular content at the edge of network based on predicted results.
In this paper, we leverage an effective dynamic graph neural network (DGNN) to jointly learn the structural and temporal patterns embedded in the bipartite graph.
We also propose an age of information (AoI) based attention mechanism to extract valuable historical information.
arXiv Detail & Related papers (2022-08-18T02:57:17Z) - Provably Efficient Reinforcement Learning for Online Adaptive Influence
Maximization [53.11458949694947]
We consider an adaptive version of content-dependent online influence problem where seed nodes are sequentially activated based on realtime feedback.
Our algorithm maintains a network model estimate and selects seed adaptively, exploring the social network while improving the optimal policy optimistically.
arXiv Detail & Related papers (2022-06-29T18:17:28Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
Graph Networks (GNNs) have achieved great success in processing graph data by extracting and propagating structure-aware features.
Recently the field has advanced from local propagation schemes that focus on local neighbors towards extended propagation schemes that can directly deal with extended neighbors consisting of both local and high-order neighbors.
Despite the impressive performance, existing approaches are still insufficient to build an efficient and learnable extended propagation scheme that can adaptively adjust the influence of local and high-order neighbors.
arXiv Detail & Related papers (2021-12-02T10:35:33Z) - Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks [1.213512753726579]
It is difficult to identify critical nodes because the network structure changes over time in temporal networks.
This paper proposes a novel and effective learning framework based on the combination of special GCNs and RNNs.
Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods.
arXiv Detail & Related papers (2021-06-19T04:16:18Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.