Temporal Link Prediction Using Graph Embedding Dynamics
- URL: http://arxiv.org/abs/2401.07516v1
- Date: Mon, 15 Jan 2024 07:35:29 GMT
- Title: Temporal Link Prediction Using Graph Embedding Dynamics
- Authors: Sanaz Hasanzadeh Fard, Mohammad Ghassemi
- Abstract summary: Temporal link prediction in dynamic networks is of particular interest due to its potential for solving complex scientific and real-world problems.
Traditional approaches to temporal link prediction have focused on finding the aggregation of dynamics of the network as a unified output.
We propose a novel perspective on temporal link prediction by defining nodes as Newtonian objects and incorporating the concept of velocity to predict network dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are a powerful representation tool in machine learning applications,
with link prediction being a key task in graph learning. Temporal link
prediction in dynamic networks is of particular interest due to its potential
for solving complex scientific and real-world problems. Traditional approaches
to temporal link prediction have focused on finding the aggregation of dynamics
of the network as a unified output. In this study, we propose a novel
perspective on temporal link prediction by defining nodes as Newtonian objects
and incorporating the concept of velocity to predict network dynamics. By
computing more specific dynamics of each node, rather than overall dynamics, we
improve both accuracy and explainability in predicting future connections. We
demonstrate the effectiveness of our approach using two datasets, including 17
years of co-authorship data from PubMed. Experimental results show that our
temporal graph embedding dynamics approach improves downstream classification
models' ability to predict future collaboration efficacy in co-authorship
networks by 17.34% (AUROC improvement relative to the baseline model).
Furthermore, our approach offers an interpretable layer over traditional
approaches to address the temporal link prediction problem.
Related papers
- SIG: Efficient Self-Interpretable Graph Neural Network for Continuous-time Dynamic Graphs [34.269958289295516]
We aim to predict future links within the dynamic graph while simultaneously providing causal explanations for these predictions.
To tackle these challenges, we propose a novel causal inference model, namely the Independent and Confounded Causal Model (ICCM)
Our proposed model significantly outperforms existing methods across link prediction accuracy, explanation quality, and robustness to shortcut features.
arXiv Detail & Related papers (2024-05-29T13:09:33Z) - A novel hybrid time-varying graph neural network for traffic flow forecasting [3.6623539239888556]
Real-time and precise traffic flow prediction is vital for the efficiency of intelligent transportation systems.
Traditional graph neural networks (GNNs) are used to describe spatial correlations among traffic nodes in urban road networks.
We have proposed a novel hybrid time-varying graph neural network (HTVGNN) for traffic flow prediction.
arXiv Detail & Related papers (2024-01-17T07:21:36Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - AoI-based Temporal Attention Graph Neural Network for Popularity
Prediction and Content Caching [9.16219929722585]
Information-centric network (ICN) aims to proactively keep limited popular content at the edge of network based on predicted results.
In this paper, we leverage an effective dynamic graph neural network (DGNN) to jointly learn the structural and temporal patterns embedded in the bipartite graph.
We also propose an age of information (AoI) based attention mechanism to extract valuable historical information.
arXiv Detail & Related papers (2022-08-18T02:57:17Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Online Multi-Agent Forecasting with Interpretable Collaborative Graph
Neural Network [65.11999700562869]
We propose a novel collaborative prediction unit (CoPU), which aggregates predictions from multiple collaborative predictors according to a collaborative graph.
Our methods outperform state-of-the-art works on the three tasks by 28.6%, 17.4% and 21.0% on average.
arXiv Detail & Related papers (2021-07-02T08:20:06Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - On a Bernoulli Autoregression Framework for Link Discovery and
Prediction [1.9290392443571387]
We present a dynamic prediction framework for binary sequences that is based on a Bernoulli generalization of the auto-regressive process.
We propose a novel problem that exploits additional information via a much larger sequence of auxiliary networks.
In contrast to existing work our gradient based estimation approach is highly efficient and can scale to networks with millions of nodes.
arXiv Detail & Related papers (2020-07-23T05:58:22Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.