論文の概要: Model Composition for Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2402.12750v2
- Date: Fri, 26 Jul 2024 10:15:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 18:11:46.486873
- Title: Model Composition for Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルのためのモデル構成
- Authors: Chi Chen, Yiyang Du, Zheng Fang, Ziyue Wang, Fuwen Luo, Peng Li, Ming Yan, Ji Zhang, Fei Huang, Maosong Sun, Yang Liu,
- Abstract要約: 本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
- 参考スコア(独自算出の注目度): 71.5729418523411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の最近の発展は、様々なモーダルからの入力を理解する汎用MLLMを作成するという目標に向かって、急速に進歩している。
しかし、既存の手法は典型的には、リソース集約的で新しいモダリティへの拡張が困難な、ペア化されたマルチモーダル命令データによる共同トレーニングに依存している。
本稿では,既存のMLLMのモデル構成を通した新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
さらに,統合過程におけるパラメータ干渉やミスマッチ問題に対処するためにDAMCを導入し,モデル性能を向上させる。
この領域の研究を容易にするために,MLLMの多様なモーダルからの入力を理解する能力を評価するベンチマークMCUBを提案する。
このベンチマークと他の4つのマルチモーダル理解タスクの実験は、ベースラインよりも大幅に改善され、モデル構成が複数のモーダルから入力を処理できる汎用モデルを作成することができることを示した。
関連論文リスト
- Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models [7.134682404460003]
そこで我々は、MoE(Mixture of Experts)をモダリティにまたがる統一多方向コネクタとして利用する、新しいトレーニングフレームワークAlt-MoEを紹介する。
我々の手法は、いくつかの優れたユニモーダルモデルで検証されている。
論文 参考訳(メタデータ) (2024-09-09T10:40:50Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - LLMBind: A Unified Modality-Task Integration Framework [38.95771765322677]
多様なマルチモーダルタスクを統一する新しいフレームワークである textbfLLMBind を導入する。
LLMBindはMixture-of-Experts (MoE) Large Language Model (LLM)を利用してマルチモーダル入力を処理し、タスク固有のトークンを生成する。
論文 参考訳(メタデータ) (2024-02-22T12:36:31Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMAは、ビデオ推論のための一般化可能、高効率、モジュラリティ融合フレームワークである。
本稿では,軽量核融合モジュールとモーダリティ・シークエンシャル・トレーニング・ストラテジーによって支援された,新しいプログレッシブ・マルチモーダル・フュージョン設計を提案する。
ビデオQA や Video-Audio/3D/Touch/Thermal QA を含む7つのビデオ言語推論タスクについて検証を行った。
論文 参考訳(メタデータ) (2024-02-08T18:27:22Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
マルチモーダル基礎モデルを用いたロバストなマルチモーダル学習に向けたTRMLを提案する。
TRMLは、欠落したモダリティを置き換えるために生成された仮想モダリティを使用する。
またセマンティックマッチング学習モジュールを設計し、セマンティック空間の生成とモダリティの欠如を協調する。
論文 参考訳(メタデータ) (2024-01-20T04:46:43Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
MM-BigBenchを導入し、様々なモデルや命令のパフォーマンスを広範囲に評価する。
本稿では,6タスクにまたがる14のマルチモーダルデータセット上で,20の言語モデル (14 MLLM) を評価し,各タスクに10の指示を与え,新しい洞察を導き出す。
論文 参考訳(メタデータ) (2023-10-13T11:57:04Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。