ObfusQate: Unveiling the First Quantum Program Obfuscation Framework
- URL: http://arxiv.org/abs/2503.23785v1
- Date: Mon, 31 Mar 2025 07:02:25 GMT
- Title: ObfusQate: Unveiling the First Quantum Program Obfuscation Framework
- Authors: Nilhil Bartake, See Toh Zi Jie, Carmen Wong Jiawen, Michael Kasper, Vivek Balachandran,
- Abstract summary: ObfusQate is a novel tool that conducts obfuscations using quantum primitives to enhance the security of classical and quantum programs.<n>We have designed and implemented two primary categories of obfuscations: quantum circuit level obfuscation and code level obfuscation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces ObfusQate, a novel tool that conducts obfuscations using quantum primitives to enhance the security of both classical and quantum programs. We have designed and implemented two primary categories of obfuscations: quantum circuit level obfuscation and code level obfuscation, encompassing a total of eight distinct methods. Quantum circuit-level obfuscation leverages on quantum gates and circuits, utilizing strategies such as quantum gate hiding and identity matrices to construct complex, non-intuitive circuits that effectively obscure core functionalities and resist reverse engineering, making the underlying code difficult to interpret. Meanwhile, code-level obfuscation manipulates the logical sequence of program operations through quantum-based opaque predicates, obfuscating execution paths and rendering program behavior more unpredictable and challenging to analyze. Additionally, ObfusQate can be used to obfuscate malicious code segments, making them harder to detect and analyze. These advancements establish a foundational framework for further exploration into the potential and limitations of quantum-based obfuscation techniques, positioning ObfusQate as a valuable tool for future developers to enhance code security in the evolving landscape of software development. To the best of our knowledge, ObfusQate represents the pioneering work in developing an automated framework for implementing obfuscations leveraging quantum primitives. Security evaluations show that obfuscations by ObfusQate maintain code behavior with polynomial overheads in space and time complexities. We have also demonstrated an offensive use case by embedding a keylogger into Shor's algorithm and obfuscating it using ObfusQate. Our results show that current Large language models like GPT 4o, GPT o3 mini and Grok 3 were not able to identify the malicious keylogger after obfuscation.
Related papers
- An Empirical Study on the Effectiveness of Large Language Models for Binary Code Understanding [50.17907898478795]
This work proposes a benchmark to evaluate the effectiveness of Large Language Models (LLMs) in real-world reverse engineering scenarios.
Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis.
arXiv Detail & Related papers (2025-04-30T17:02:06Z) - TetrisLock: Quantum Circuit Split Compilation with Interlocking Patterns [7.041881854531399]
In quantum computing, quantum circuits are fundamental representations of quantum algorithms.
In this paper, we propose TetrisLock, a split compilation method for quantum circuit obfuscation.
arXiv Detail & Related papers (2025-03-15T03:41:24Z) - Quantum Token Obfuscation via Superposition [0.0]
As quantum computing advances, traditional cryptographic security measures, including token obfuscation, face increasing vulnerability to quantum attacks.<n>This paper presents a quantum-enhanced approach to token obfuscation that leverages quantum superposition and multi-basis verification.
arXiv Detail & Related papers (2024-11-02T14:05:20Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
We propose a benchmark to evaluate the effectiveness of Large Language Models (LLMs) in binary code understanding.
Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis.
arXiv Detail & Related papers (2024-04-15T14:44:08Z) - Quantum State Obfuscation from Classical Oracles [18.878095837031292]
A major unresolved question in quantum cryptography is whether it is possible to obfuscate arbitrary quantum computation.
We develop a new array of techniques that we use to construct a quantum state obfuscator.
arXiv Detail & Related papers (2024-01-18T18:42:28Z) - Randomized Reversible Gate-Based Obfuscation for Secured Compilation of
Quantum Circuit [5.444459446244819]
We propose an obfuscation technique for quantum circuits using reversible gates to protect them from such attacks during compilation.
Our method achieves TVD of up to 1.92 and performs at least 2X better than a previously reported obfuscation method.
arXiv Detail & Related papers (2023-05-02T00:24:34Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Obfuscation of Pseudo-Deterministic Quantum Circuits [14.026980555435841]
We show how to obfuscate pseudo-deterministic quantum circuits in the classical oracle model.
Our obfuscator outputs a quantum state $ketwidetildeQ$ repeatedly on arbitrary inputs.
arXiv Detail & Related papers (2023-02-22T01:14:20Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Semantic Security for Quantum Wiretap Channels [68.24747267214373]
We consider the problem of semantic security via classical-quantum and quantum wiretap channels.
We use explicit constructions to transform a non-secure code into a semantically secure code, achieving capacity by means of biregular irreducible functions.
arXiv Detail & Related papers (2020-01-16T09:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.