Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation
- URL: http://arxiv.org/abs/2503.23869v2
- Date: Sun, 20 Apr 2025 01:10:23 GMT
- Title: Communication-Efficient and Personalized Federated Foundation Model Fine-Tuning via Tri-Matrix Adaptation
- Authors: Yongle Li, Bo Liu, Sheng Huang, ZHeng ZHang, Xiaotong Yuan, Richang Hong,
- Abstract summary: This paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation.<n>Experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions.
- Score: 47.82423317739088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning, fine-tuning pre-trained foundation models poses significant challenges, particularly regarding high communication cost and suboptimal model performance due to data heterogeneity between the clients. To address these issues, this paper introduces communication-efficient federated LoRA adaption (CE-LoRA), a method that employs a tri-factorization low-rank adaptation approach with personalized model parameter aggregation. We first presents a novel LoRA parameter factorization by introducing a small-size dense matrix, which can significantly reduce the communication cost and achieve comparable empirical performance than transferring the low-rank parameter matrix used by existing methods. Without violating data privacy, the server considers the client similarity in both training dataset and model parameter space, and learns personalized weights for model aggregation. Our experiments on various LLM and VLM fine-tuning tasks demonstrate that CE-LoRA not only significantly reduces communication overhead but also improves performance under not independently and identically distributed data conditions. In addition, CE-LoRA improves data privacy protection, effectively mitigating gradient-based data reconstruction attacks.
Related papers
- FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Personalized Federated Fine-Tuning for LLMs via Data-Driven Heterogeneous Model Architectures [15.645254436094055]
Federated Learning (FL) enables collaborative fine-tuning of Large Language Models without data sharing.<n>We propose FedAMoLE, a lightweight personalized FL framework that enables data-driven heterogeneous model architectures.<n> Experiments show that FedAMoLE improves accuracy by an average of 5.14% compared to existing approaches.
arXiv Detail & Related papers (2024-11-28T13:20:38Z) - Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning.
It aims to tackle the challenges posed by small-sample data in fields such as drug discovery, target recognition, and malicious traffic detection.
Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning.
arXiv Detail & Related papers (2024-11-25T16:51:11Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.<n>Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.<n>LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - Federated LLMs Fine-tuned with Adaptive Importance-Aware LoRA [24.871424801066006]
Federated fine-tuning of Large Language Models (LLMs) enables task-specific adaptation across diverse datasets while preserving data privacy.
We propose a novel Heterogeneous Adaptive Federated Low-Rank Adaptation (LoRA) fine-tuned LLM framework (HAFL)
Our method converges quickly with low communication size, and avoids performance degradation when distributing models to clients.
arXiv Detail & Related papers (2024-11-10T19:59:54Z) - Towards Federated Low-Rank Adaptation of Language Models with Rank Heterogeneity [12.515874333424929]
We observe that heterogeneous ranks among clients lead to unstable performance.<n>Our analysis attributes this instability to the conventional zero-padding aggregation strategy.<n>We propose a replication-based padding strategy that better retains valuable information from clients with high-quality data.
arXiv Detail & Related papers (2024-06-25T11:49:33Z) - Promoting Data and Model Privacy in Federated Learning through Quantized LoRA [41.81020951061438]
We introduce a method that just needs to distribute a quantized version of the model's parameters during training.
We combine this quantization strategy with LoRA, a popular and parameter-efficient fine-tuning method, to significantly reduce communication costs in federated learning.
The proposed framework, named textscFedLPP, successfully ensures both data and model privacy in the federated learning context.
arXiv Detail & Related papers (2024-06-16T15:23:07Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.