GLane3D : Detecting Lanes with Graph of 3D Keypoints
- URL: http://arxiv.org/abs/2503.23882v1
- Date: Mon, 31 Mar 2025 09:33:26 GMT
- Title: GLane3D : Detecting Lanes with Graph of 3D Keypoints
- Authors: Halil İbrahim Öztürk, Muhammet Esat Kalfaoğlu, Ozsel Kilinc,
- Abstract summary: We propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct 3D lanes.<n>PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph.<n>Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity.
- Score: 1.7751300245073598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
Related papers
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++ is a novel framework that integrates pretraining and downstream tasks using consecutive camera pairs.
We show that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions.
With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving.
arXiv Detail & Related papers (2025-03-25T17:59:57Z) - Rethinking Lanes and Points in Complex Scenarios for Monocular 3D Lane Detection [21.886902999963727]
We present a theoretical analysis alongside experimental validation to verify that current sparse lane representation methods contain inherent flaws.<n>To address this issue, we propose a novel patching strategy to completely represent the full lane structure.<n>To enhance the model's perception of lane structures, we propose the PointLane attention (PL-attention)
arXiv Detail & Related papers (2025-03-08T14:45:49Z) - Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
Lane detection plays an important role in autonomous driving perception systems.<n>As deep learning algorithms gain popularity, monocular lane detection methods based on them have demonstrated superior performance.<n>This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
arXiv Detail & Related papers (2024-11-25T12:09:43Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Learning Shared RGB-D Fields: Unified Self-supervised Pre-training for Label-efficient LiDAR-Camera 3D Perception [17.11366229887873]
We introduce a unified pretraining strategy, NeRF-Supervised Masked Auto (NS-MAE)
NS-MAE exploits NeRF's ability to encode both appearance and geometry, enabling efficient masked reconstruction of multi-modal data.
Results: NS-MAE outperforms prior SOTA pre-training methods that employ separate strategies for each modality.
arXiv Detail & Related papers (2024-05-28T08:13:49Z) - 3D Lane Detection from Front or Surround-View using Joint-Modeling & Matching [27.588395086563978]
We propose a joint modeling approach that combines Bezier curves and methods.
We also introduce a novel 3D Spatial, representing an exploration of 3D surround-view lane detection research.
This innovative method establishes a new benchmark in front-view 3D lane detection on the Openlane dataset.
arXiv Detail & Related papers (2024-01-16T01:12:24Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations [76.45009891152178]
Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks.
We show, for the first time, that general representations learning can be achieved through the task of occupancy prediction.
Our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
arXiv Detail & Related papers (2023-09-19T11:13:01Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic
Occupancy Perception [73.05425657479704]
We propose OpenOccupancy, which is the first surrounding semantic occupancy perception benchmark.
We extend the large-scale nuScenes dataset with dense semantic occupancy annotations.
Considering the complexity of surrounding occupancy perception, we propose the Cascade Occupancy Network (CONet) to refine the coarse prediction.
arXiv Detail & Related papers (2023-03-07T15:43:39Z) - A Keypoint-based Global Association Network for Lane Detection [47.93323407661912]
Lane detection is a challenging task that requires predicting complex topology shapes of lane lines and distinguishing different types of lanes simultaneously.
We propose a Global Association Network (GANet) to formulate the lane detection problem from a new perspective.
Our method outperforms previous methods with F1 score of 79.63% on CULane and 97.71% on Tusimple dataset with high FPS.
arXiv Detail & Related papers (2022-04-15T05:24:04Z) - Focus on Local: Detecting Lane Marker from Bottom Up via Key Point [10.617793053931964]
We propose a novel lane marker detection solution, FOLOLane, that focuses on modeling local patterns and achieving prediction of global structures.
Specifically, the CNN models lowcomplexity local patterns with two separate heads, the first one predicts the existence of key points, and the second refines the location of key points in the local range and correlates key points of the same lane line.
arXiv Detail & Related papers (2021-05-28T08:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.