論文の概要: An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy
- arxiv url: http://arxiv.org/abs/2503.23887v1
- Date: Mon, 31 Mar 2025 09:40:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:11.197886
- Title: An End-to-End Comprehensive Gear Fault Diagnosis Method Based on Multi-Scale Feature-Level Fusion Strategy
- Title(参考訳): マルチスケール特徴レベル融合戦略に基づくエンド・ツー・エンド総合歯車故障診断法
- Authors: Bowei Qiao, Hongwei Wang,
- Abstract要約: 加速度信号を用いたギアのインテリジェントな故障診断手法を提案する。
本手法は、歯車におけるエンドツーエンドの故障診断の要件を効果的に満たすものである。
- 参考スコア(独自算出の注目度): 2.7257711357543504
- License:
- Abstract: To satisfy the requirements of the end-to-end fault diagnosis of gears, an integrated intelligent method of fault diagnosis for gears using acceleration signals was proposed, which was based on Gabor-based Adaptive Short-Time Fourier Transform (Gabor-ASTFT) and Dual-Tree Complex Wavelet Transform(DTCWT) algorithms, Dilated Residual structure and feature fusion layer, is proposed in this paper. Initially, the raw one-dimensional acceleration signals collected from the gearbox base using vibration sensors undergo pre-segmentation processing. The Gabor-ASTFT and DTCWT are then applied to convert the original one-dimensional time-domain signals into two-dimensional time-frequency representations, facilitating the preliminary extraction of fault features and obtaining weak feature maps.Subsequently, a dual-channel structure is established using deconvolution and dilated convolution to perform upsampling and downsampling on the feature maps, adjusting their sizes accordingly. A feature fusion layer is then constructed to integrate the dual-channel features, enabling multi-scale analysis of the extracted fault features.Finally, a convolutional neural network (CNN) model incorporating a residual structure is developed to conduct deep feature extraction from the fused feature maps. The extracted features are subsequently fed into a Global Average Pooling(GAP) and a classification function for fault classification. Conducting comparative experiments on different datasets, the proposed method is demonstrated to effectively meet the requirements of end-to-end fault diagnosis for gears.
- Abstract(参考訳): 本稿では, 適応短時間フーリエ変換 (Gabor-ASTFT) とDual-Tree Complex Wavelet Transform (DTCWT) アルゴリズム, Dilated Residual Structure と Feature fusion Layer を基にした, 加速度信号を用いた歯車故障診断のインテリジェントな統合手法を提案する。
当初、振動センサを用いてギアボックスベースから収集した生の1次元加速度信号は、前分割処理を行う。
次に、Gabor-ASTFT と DTCWT を用いて、元の1次元の時間領域信号を2次元の時間周波数表現に変換し、断層特徴の予備抽出と弱い特徴写像の取得を容易にし、デコンボリューションと拡張畳み込みを用いて二重チャネル構造を構築し、特徴写像のアップサンプリングとダウンサンプリングを行い、そのサイズを調整した。
次に,両チャネルを融合して抽出した断層特徴のマルチスケール解析を可能にする特徴融合層を構築するとともに,残差構造を組み込んだ畳み込みニューラルネットワーク(CNN)モデルを開発し,融合した特徴写像から深い特徴抽出を行う。
抽出した特徴をGlobal Average Pooling(GAP)と障害分類のための分類関数に入力する。
異なるデータセットで比較実験を行い,装置のエンドツーエンド故障診断の要件を効果的に満たすために提案手法を実証した。
関連論文リスト
- Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
MISO (Multiple-input Single-output) フレームワークを提案する。
それは複数の導波路で構成されており、多数の低コストアンテナ(PA)を備えている。
PAの位置は、大規模パスと空間の両方にまたがるように再構成することができる。
論文 参考訳(メタデータ) (2025-02-12T18:54:10Z) - Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
デュアルブランチ時間スペクトル空間変換器(Dual-TSST)を用いた新しいデコードアーキテクチャネットワークを提案する。
提案するDual-TSSTは様々なタスクにおいて優れており,平均精度80.67%の脳波分類性能が期待できる。
本研究は,高性能脳波デコーディングへの新たなアプローチを提供するとともに,将来のCNN-Transformerベースのアプリケーションにも大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-05T05:08:43Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
本稿では,音環境における故障診断性能を向上させるため,TDANet(Tunal Denoise Convolutional Neural Network With Attention)を提案する。
TDANetモデルは、その周期特性に基づいて1次元信号を2次元テンソルに変換し、マルチスケールの2次元畳み込みカーネルを用いて周期内および周期間の信号情報を抽出する。
CWRU (single sensor) とReal Aircraft Sensor Fault (multiple sensor) の2つのデータセットに対する評価は、TDANetモデルがノイズの多い環境下での診断精度において既存のディープラーニングアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-29T02:54:41Z) - Rolling bearing fault diagnosis method based on generative adversarial enhanced multi-scale convolutional neural network model [7.600902237804825]
マルチスケール畳み込みニューラルネットワークモデルに基づく転がり軸受故障診断手法を提案する。
ResNet法と比較して,提案手法はより優れた一般化性能と反雑音性能を有することを示す。
論文 参考訳(メタデータ) (2024-03-21T06:42:35Z) - DTP-Net: Learning to Reconstruct EEG signals in Time-Frequency Domain by
Multi-scale Feature Reuse [7.646218090238708]
学習可能な時間周波数変換を挟んだDTP(Densely Connected Temporal Pyramid)で構成された、DTP-Netと呼ばれる完全な畳み込みニューラルネットワークを提案する。
脳波信号は様々なアーティファクトによって容易に破壊され、疾患診断や脳-コンピュータインターフェース(BCI)などのシナリオにおいて、信号品質を改善するためにアーティファクトの除去が重要となる
2つの公開セミシミュレートされたデータセットで実施された大規模な実験は、DTP-Netの効果的なアーティファクト除去性能を示す。
論文 参考訳(メタデータ) (2023-11-27T11:09:39Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
本稿では,オートエンコーダに基づく自己教師付き学習に基づく異常ノード検出手法を設計する。
本手法は,時間的WSNデータフロー特徴抽出,空間的位置特徴抽出,モーダルWSN相関特徴抽出を統合する。
実験の結果、設計法はベースラインを上回り、F1スコアは90.6%に達した。
論文 参考訳(メタデータ) (2022-12-26T01:54:02Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
本稿では,GANトレーニング中の不安定性問題に対応するため,ジェネレータネットワークに正規性から逸脱する条件付け手法を提案する。
我々は、生成元をシュア分解のスペクトル領域で計算された実サンプルの正規化関数から逸脱するように強制する。
論文 参考訳(メタデータ) (2020-10-12T16:50:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。