CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration
- URL: http://arxiv.org/abs/2309.07822v3
- Date: Tue, 13 Feb 2024 10:52:52 GMT
- Title: CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration
- Authors: Rachneet Sachdeva, Martin Tutek, Iryna Gurevych
- Abstract summary: We show that data augmentation consistently enhances OOD performance.
We also show that CF augmented models which are easier to calibrate also exhibit much lower entropy when assigning importance.
- Score: 59.48235003469116
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, large language models (LLMs) have shown remarkable
capabilities at scale, particularly at generating text conditioned on a prompt.
In our work, we investigate the use of LLMs to augment training data of small
language models~(SLMs) with automatically generated counterfactual~(CF)
instances -- i.e. minimally altered inputs -- in order to improve
out-of-domain~(OOD) performance of SLMs in the extractive question
answering~(QA) setup. We show that, across various LLM generators, such data
augmentation consistently enhances OOD performance and improves model
calibration for both confidence-based and rationale-augmented calibrator
models. Furthermore, these performance improvements correlate with higher
diversity of CF instances in terms of their surface form and semantic content.
Finally, we show that CF augmented models which are easier to calibrate also
exhibit much lower entropy when assigning importance, indicating that
rationale-augmented calibrators prefer concise explanations.
Related papers
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.
LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.
LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation [11.238548725286122]
We introduce ZeroCF, a faithful approach for leveraging important words derived from feature attribution methods to generate counterfactual examples.
Second, we present a new framework, FitCF, which further verifies aforementioned counterfactuals by label flip verification and then inserts them as demonstrations.
We show the effectiveness of LIME and Integrated Gradients as backbone attribution methods for FitCF and find that the number of demonstrations has the largest effect on performance.
arXiv Detail & Related papers (2025-01-01T09:00:10Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.
Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.
We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
Adaptive Sparse Trainer (AST) is a novel and efficient retraining framework tailored for semi-structured sparse models.
AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively.
arXiv Detail & Related papers (2024-07-30T06:33:44Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Meta-Learning Fast Weight Language Models [105.66999854213724]
We present Fast Weight Layers (FWLs), a neural component that provides the benefits of dynamic evaluation much more efficiently.
FWLs can be applied at training time so the model learns to make good use of gradient updates.
arXiv Detail & Related papers (2022-12-05T18:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.