Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning
- URL: http://arxiv.org/abs/2502.08323v1
- Date: Wed, 12 Feb 2025 11:44:19 GMT
- Title: Contextual Compression Encoding for Large Language Models: A Novel Framework for Multi-Layered Parameter Space Pruning
- Authors: Barnaby Schmitt, Alistair Grosvenor, Matthias Cunningham, Clementine Walsh, Julius Pembrokeshire, Jonathan Teel,
- Abstract summary: Contextual Compression.
(CCE) introduced a multi-stage encoding mechanism that dynamically restructured parameter distributions.
CCE retained linguistic expressivity and coherence, maintaining accuracy across a range of text generation and classification tasks.
- Score: 0.0
- License:
- Abstract: Context-aware compression techniques have gained increasing attention as model sizes continue to grow, introducing computational bottlenecks that hinder efficient deployment. A structured encoding approach was proposed to selectively eliminate redundant parameter groups while ensuring that representational fidelity was preserved across multiple layers. Contextual Compression Encoding (CCE) introduced a multi-stage encoding mechanism that dynamically restructured parameter distributions, allowing for significant reductions in memory footprint and computational complexity. Experimental evaluations demonstrated that models compressed through CCE retained linguistic expressivity and coherence, maintaining accuracy across a range of text generation and classification tasks. Layer-wise analysis revealed that middle-network layers exhibited higher compression ratios, aligning with the observation that self-attention and feed-forward transformations contained redundancies that could be reorganized without impairing functional capacity. Comparisons against conventional quantization and pruning methods confirmed that CCE provided a more balanced trade-off between efficiency and model retention, achieving reductions in energy consumption and inference latency without requiring extensive retraining. Computational efficiency improvements were particularly evident in deployment scenarios involving resource-constrained environments, where reductions in memory usage enabled more scalable implementations. Further analyses of internal network behavior showed that compressed models exhibited stable activation distributions and adapted dynamically to input variations, reinforcing the viability of structured compression strategies for optimizing large-scale architectures.
Related papers
- Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
Token representations in high-dimensional latent spaces often exhibit redundancy, limiting computational efficiency and reducing structural coherence across model layers.
This paper introduces a structured transformation mechanism that enforces a multi-scale organization within learned embeddings.
Empirical evaluation demonstrates a reduction in representational variance across layers, contributing to more stable perplexity distributions and enhancing predictive confidence in text generation.
arXiv Detail & Related papers (2025-02-13T04:01:54Z) - Structured Token Retention and Computational Memory Paths in Large Language Models [0.0]
This paper introduces a probabilistic selection framework that dynamically adjusts token persistence based on contextual significance.
It is extended through hierarchical memory allocation, refining retention efficiency through structured reallocation of token embeddings.
The integration of STR and CMP into an open-source model illustrates the adaptability of structured memory retention methodologies.
arXiv Detail & Related papers (2025-02-05T11:59:22Z) - Context-Preserving Tensorial Reconfiguration in Large Language Model Training [0.0]
Context-Preservingial Reconfiguration (CPTR) enables dynamic complexity of weight tensors through structured factorization and adaptive contraction.
Empirical evaluations demonstrate that CPTR improves coherence retention across extended sequences.
Performance comparisons reveal that CPTR-enhanced models exhibit greater computational efficiency and reduced memory consumption.
arXiv Detail & Related papers (2025-02-01T00:55:19Z) - Structured Context Recomposition for Large Language Models Using Probabilistic Layer Realignment [0.0]
This paper introduces a probabilistic layer realignment strategy that dynamically adjusts learned representations within transformer layers.
It mitigates abrupt topic shifts and logical inconsistencies, particularly in scenarios where sequences exceed standard attention window constraints.
While SCR incurs a moderate increase in processing time, memory overhead remains within feasible limits, making it suitable for practical deployment in autoregressive generative applications.
arXiv Detail & Related papers (2025-01-29T12:46:42Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy.
A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding.
Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability.
arXiv Detail & Related papers (2025-01-23T11:34:04Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.