AMB-FHE: Adaptive Multi-biometric Fusion with Fully Homomorphic Encryption
- URL: http://arxiv.org/abs/2503.23949v1
- Date: Mon, 31 Mar 2025 11:00:08 GMT
- Title: AMB-FHE: Adaptive Multi-biometric Fusion with Fully Homomorphic Encryption
- Authors: Florian Bayer, Christian Rathgeb,
- Abstract summary: We present an adaptive multi-biometric fusion with fully homomorphic encryption (AMB-FHE)<n>AMB-FHE is benchmarked against a bimodal biometric database consisting of the CASIA iris and MCYT fingerprint datasets.
- Score: 3.092212810857262
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biometric systems strive to balance security and usability. The use of multi-biometric systems combining multiple biometric modalities is usually recommended for high-security applications. However, the presentation of multiple biometric modalities can impair the user-friendliness of the overall system and might not be necessary in all cases. In this work, we present a simple but flexible approach to increase the privacy protection of homomorphically encrypted multi-biometric reference templates while enabling adaptation to security requirements at run-time: An adaptive multi-biometric fusion with fully homomorphic encryption (AMB-FHE). AMB-FHE is benchmarked against a bimodal biometric database consisting of the CASIA iris and MCYT fingerprint datasets using deep neural networks for feature extraction. Our contribution is easy to implement and increases the flexibility of biometric authentication while offering increased privacy protection through joint encryption of templates from multiple modalities.
Related papers
- AuthFormer: Adaptive Multimodal biometric authentication transformer for middle-aged and elderly people [0.1053373860696675]
We propose an adaptive multimodal biometric authentication model, AuthFormer, tailored for elderly users.
AuthFormer is trained on the LUTBIO multimodal biometric database, containing biometric data from elderly individuals.
Experiments show that AuthFormer achieves an accuracy of 99.73%.
arXiv Detail & Related papers (2024-11-08T08:21:08Z) - Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security [0.0]
We introduce a novel multi-modal biometric authentication system that integrates facial, vocal, and signature data to enhance security measures.
Our model architecture incorporates dual shared layers alongside modality-specific enhancements for comprehensive feature extraction.
Our approach demonstrates significant improvements in authentication accuracy and robustness, paving the way for advanced secure identity verification solutions.
arXiv Detail & Related papers (2024-11-04T14:27:10Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Privacy-preserving Multi-biometric Indexing based on Frequent Binary
Patterns [7.092869001331781]
We propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates.
A multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics.
arXiv Detail & Related papers (2023-10-04T18:18:24Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
Soft biometrics such as gait are widely used with face in surveillance tasks like person recognition and re-identification.
We propose a novel adaptive multi-biometric fusion strategy for the dynamic incorporation of gait and face biometric cues by leveraging keyless attention deep neural networks.
arXiv Detail & Related papers (2023-03-24T05:28:35Z) - Multi-Biometric Fuzzy Vault based on Face and Fingerprints [3.6934118484548306]
fuzzy vault scheme has been established as cryptographic primitive suitable for privacy-preserving biometric authentication.
We construct a multi-biometric fuzzy vault based on face and multiple fingerprints.
arXiv Detail & Related papers (2023-01-17T13:39:12Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
We describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign.
Our approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios.
Results show that the proposed approach outperforms all the rule-based fusion schemes.
arXiv Detail & Related papers (2022-11-24T12:11:22Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - Deep Hashing for Secure Multimodal Biometrics [1.7188280334580195]
We present a framework for feature-level fusion that generates a secure multimodal template from each user's face and iris biometrics.
We employ a hybrid secure architecture by combining cancelable biometrics with secure sketch techniques.
The proposed approach also provides cancelability and unlinkability of the templates along with improved privacy of the biometric data.
arXiv Detail & Related papers (2020-12-29T14:15:05Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.