論文の概要: AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
- arxiv url: http://arxiv.org/abs/2503.23956v1
- Date: Mon, 31 Mar 2025 11:13:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:38:22.386242
- Title: AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
- Title(参考訳): AirCache: 効率的な視覚・言語モデル推論のためのモード間の関連性KVキャッシュ圧縮
- Authors: Kai Huang, Hao Zou, Bochen Wang, Ye Xi, Zhen Xie, Hao Wang,
- Abstract要約: 本稿では,LVLM推論の高速化を目的とした新しいKVキャッシュ圧縮手法であるAirCacheを提案する。
本手法は,視覚的KVキャッシュの10%を保ちながら,フルキャッシュに匹敵する性能を実現する。
- 参考スコア(独自算出の注目度): 11.73134417321505
- License:
- Abstract: Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
- Abstract(参考訳): 近年,LVLM(Large Visual Language Models)が注目されている。
しかし、多数のビジュアルトークンを処理し、長いコンテキストの出力を生成すると、かなりの計算オーバーヘッドが発生し、キー値(KV)キャッシュに対する過剰な要求が生じる。
この重要なボトルネックに対処するために,LVLM推論の高速化を目的とした新しいKVキャッシュ圧縮手法であるAirCacheを提案する。
本研究は,LVLMの注意機構における視覚的トークンとテキスト的トークンの相関関係を系統的に検討する。
経験的分析により,キャッシュされた視覚トークンの冗長性が明らかになり,これらのトークンを戦略的に排除することは,コンテキスト生成を著しく加速させながら,モデル性能を保たせる。
これらの知見に触発されて、我々はKVキャッシュにおける視覚成分の重要性を評価するエリート観測窓を導入し、マルチパースペクティブ整合性を高めた安定したモーダル間の関連性モデリングに焦点を当てた。
さらに,トークン重要度分布の強度と歪度を活かし,一様割当よりも優れた効率性を示すアダプティブ層単位の予算割当戦略を開発した。
複数のLVLMおよびベンチマークで総合評価を行った結果,視覚的KVキャッシュの10%しか保持せず,各バッチサイズでの復号遅延を29%から66%削減し,入力長の高速化を図ることができた。
特に,キャッシュ保持率の低下に伴い,既存の手法に比べて性能上の優位性が高まっている。
関連論文リスト
- CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation [63.65323577445951]
キャッシュスパース表現(CSR)と呼ばれる新しい手法を提案する。
CSRは、密度の高いKey-Valueキャッシュテンソルをスパースインデックスとウェイトに変換し、LLM推論中によりメモリ効率のよい表現を提供する。
我々の実験は、CSRが最先端KVキャッシュ量子化アルゴリズムに匹敵する性能を達成することを示した。
論文 参考訳(メタデータ) (2024-12-16T13:01:53Z) - Cross-Self KV Cache Pruning for Efficient Vision-Language Inference [19.062950348441426]
KVキャッシュプルーニングは、長文自動回帰生成におけるメモリと計算コストを削減するための有望な手法として登場した。
我々は、注意スコアをモダリティ内注意(同じモダリティ)とモダリティ間注意(全体モダリティ)に分解することを提案する。
最終的なトレーニング不要手法である textbfCross-textbfSelf textbfPruning (CSP) は、完全なKVキャッシュを持つモデルと比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2024-12-05T22:47:17Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
大規模視覚言語モデル(VLM)を加速するための有望なアプローチは、特定のレイヤからの注意マップのような部分的な情報を使用してトークンの重要性を評価し、重要度を低く抑えることである。
i) 重要な視覚的トークンを正確に識別するには,部分的注意情報は不十分であり,特に低トークン保持率において,最適なパフォーマンスをもたらす。 (ii) 全層に集約された注目マップのようなグローバルな注意情報は,より効果的に重要なトークンを保存し,攻撃的プルーニングの下で同等のパフォーマンスを維持する。 (iii) 小さなVLMから集約されたグローバルな注意マップは,大きなVLMとよく似ている。
論文 参考訳(メタデータ) (2024-12-04T13:56:44Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
論文 参考訳(メタデータ) (2024-10-29T20:04:34Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
メモリフットプリントを大幅に最小化するKVキャッシュを最適化する革新的な手法を提案する。
KVキャッシュ消去ポリシーであるCORMは、モデル微調整を必要とせずに、推論に必要なキーと値のペアを動的に保持する。
検証の結果,CORMはKVキャッシュの推論メモリ使用量を最大70%削減し,LongBenchの6つのタスクで性能劣化を無視できることがわかった。
論文 参考訳(メタデータ) (2024-04-24T16:11:54Z) - QAQ: Quality Adaptive Quantization for LLM KV Cache [3.163526369095745]
モデルデプロイメントのボトルネックは、コンテキスト長のキーバリューキャッシュの線形拡張によって生じる。
KVキャッシュのための品質適応量子化スキームQAQを提案する。
論文 参考訳(メタデータ) (2024-03-07T16:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。