論文の概要: VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration
- arxiv url: http://arxiv.org/abs/2410.23317v1
- Date: Tue, 29 Oct 2024 20:04:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:41.368095
- Title: VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration
- Title(参考訳): VLキャッシュ:視覚言語モデル推論高速化のためのスポーサリティとモダリティを考慮したKVキャッシュ圧縮
- Authors: Dezhan Tu, Danylo Vashchilenko, Yuzhe Lu, Panpan Xu,
- Abstract要約: VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
キーバリュー(KV)キャッシュは、画像やビデオなどの長い視覚的コンテキストをエンコードする。
既存のKVキャッシュ圧縮手法は大規模言語モデル(LLM)に有効である
VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピを提案する。
- 参考スコア(独自算出の注目度): 7.463830743649754
- License:
- Abstract: Vision-Language Models (VLMs) have demonstrated impressive performance across a versatile set of tasks. A key challenge in accelerating VLMs is storing and accessing the large Key-Value (KV) cache that encodes long visual contexts, such as images or videos. While existing KV cache compression methods are effective for Large Language Models (LLMs), directly migrating them to VLMs yields suboptimal accuracy and speedup. To bridge the gap, we propose VL-Cache, a novel KV cache compression recipe tailored for accelerating VLM inference. In this paper, we first investigate the unique sparsity pattern of VLM attention by distinguishing visual and text tokens in prefill and decoding phases. Based on these observations, we introduce a layer-adaptive sparsity-aware cache budget allocation method that effectively distributes the limited cache budget across different layers, further reducing KV cache size without compromising accuracy. Additionally, we develop a modality-aware token scoring policy to better evaluate the token importance. Empirical results on multiple benchmark datasets demonstrate that retaining only 10% of KV cache achieves accuracy comparable to that with full cache. In a speed benchmark, our method accelerates end-to-end latency of generating 100 tokens by up to 2.33x and speeds up decoding by up to 7.08x, while reducing the memory footprint of KV cache in GPU by 90%.
- Abstract(参考訳): VLM(Vision-Language Models)は、多目的なタスクセットにまたがる印象的なパフォーマンスを実証している。
VLMの高速化における重要な課題は、画像やビデオなどの長い視覚的コンテキストをエンコードする大きなキーバリュー(KV)キャッシュの保存とアクセスである。
既存のKVキャッシュ圧縮手法はLarge Language Models (LLMs) に有効であるが、直接VLMに移行することで、最適以下の精度と高速化が得られる。
このギャップを埋めるために,VLM推論の高速化に適した新しいKVキャッシュ圧縮レシピであるVL-Cacheを提案する。
本稿では,視覚とテキストのトークンを前処理と復号フェーズで区別することで,VLM注目の特異な空間パターンについて検討する。
これらの観測に基づいて,各層に限られたキャッシュ予算を効果的に分散し,精度を損なうことなくKVキャッシュサイズを小さくする,階層適応性を考慮したキャッシュ予算割当手法を提案する。
さらに,トークンの重要度をよりよく評価するためのモダリティ対応トークンスコアリングポリシーを開発した。
複数のベンチマークデータセットの実証結果は、KVキャッシュの10%しか保持していないことが、完全なキャッシュと同等の精度を実現していることを示している。
速度ベンチマークでは,100トークンを最大2.33倍高速に生成し,デコーディングを最大7.08倍高速化し,GPUにおけるKVキャッシュのメモリフットプリントを90%削減する。
関連論文リスト
- FastKV: KV Cache Compression for Fast Long-Context Processing with Token-Selective Propagation [4.856070170902535]
大きな言語モデル(LLM)は、長いコンテキストシーケンスを扱うのに優れている。
コンテキスト情報を格納するために、かなりのキーバリュー(KV)キャッシュが必要である。
FastKVは、長いコンテキストシーケンスのレイテンシを高めるために設計されたKVキャッシュ圧縮方式である。
論文 参考訳(メタデータ) (2025-02-03T05:25:09Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。
我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。
認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (2023-10-03T05:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。