Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
- URL: http://arxiv.org/abs/2503.24062v1
- Date: Mon, 31 Mar 2025 13:22:34 GMT
- Title: Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
- Authors: Fatemeh Mohammadi, Tommaso Romano, Samira Maghool, Paolo Ceravolo,
- Abstract summary: This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by Large Language Models.<n>Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets.
- Score: 0.2687400480679652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
Related papers
- Few-shot LLM Synthetic Data with Distribution Matching [37.55363714371521]
Large language models (LLMs) produce high-quality synthetic data to enhance the performance of smaller models.
LLMs-generated synthetic data often differs from the real data in key language attributes.
We introduce SynAlign: a synthetic data generation and filtering framework based on key attribute distribution matching.
arXiv Detail & Related papers (2025-02-09T16:43:32Z) - Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
We investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning.<n>We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted.<n>Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.
arXiv Detail & Related papers (2024-10-29T17:55:00Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
We investigate the effectiveness of generating synthetic data through large language models (LLMs)
Our experiments show that while synthetic data can effectively capture performance of various methods for simpler tasks, it falls short for more complex tasks like named entity recognition.
We propose a new metric called the bias factor, which evaluates the biases introduced when the same LLM is used to both generate benchmarking data and to perform the tasks.
arXiv Detail & Related papers (2024-09-18T13:20:23Z) - Data Generation Using Large Language Models for Text Classification: An Empirical Case Study [15.447491854250227]
We use natural language understanding (NLU) models trained on synthetic data to assess the quality of synthetic data from different generation approaches.
This work provides an empirical analysis of the impact of these factors and offers recommendations for better data generation practices.
arXiv Detail & Related papers (2024-06-27T21:41:43Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.
We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Synthetic Data Generation with Large Language Models for Text
Classification: Potential and Limitations [21.583825474908334]
We study how the performance of models trained on synthetic data may vary with the subjectivity of classification.
Our results indicate that subjectivity, at both the task level and instance level, is negatively associated with the performance of the model trained on synthetic data.
arXiv Detail & Related papers (2023-10-11T19:51:13Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.