論文の概要: A Comparative Study of Scanpath Models in Graph-Based Visualization
- arxiv url: http://arxiv.org/abs/2503.24160v1
- Date: Mon, 31 Mar 2025 14:43:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:33:37.212902
- Title: A Comparative Study of Scanpath Models in Graph-Based Visualization
- Title(参考訳): グラフベース可視化における走査パスモデルの比較検討
- Authors: Angela Lopez-Cardona, Parvin Emami, Sebastian Idesis, Saravanakumar Duraisamy, Luis A. Leiva, Ioannis Arapakis,
- Abstract要約: アイトラッキング(ET)データは、コスト、プライバシ、スケーラビリティに関する課題を提示する。
本研究では,40名の参加者を対象に,グラフ解析を行ったET実験を行った。
我々は,DeepGaze,UMSS,Gazeformerなどのモデルで生成したヒトスキャンパスと合成パスを比較した。
- 参考スコア(独自算出の注目度): 7.592272924252313
- License:
- Abstract: Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
- Abstract(参考訳): インフォメーションビジュアライゼーション(インフォメーションビジュアライゼーション)システムは、データ解釈を強化するために視覚表現を利用する。
インターフェース設計の最適化には,視覚的注意の配分方法の理解が不可欠である。
しかしながら、Eye-tracking(ET)データ収集は、コスト、プライバシ、スケーラビリティに関する課題を提示する。
計算モデルは、視線パターンを予測する代替手段を提供し、InfoVisの研究を進める。
本研究では,40名の参加者によるET実験を行い,デジタル法医学の文脈における複雑さに関する質問に答えながら,グラフの分析を行った。
我々は,DeepGaze,UMSS,Gazeformerなどのモデルで生成したヒトスキャンパスと合成パスを比較した。
本研究は,これらのモデルの精度を評価し,問合せの複雑さとノード数が性能に与える影響について検討する。
この研究は視覚分析における予測モデリングの発展に寄与し、InfoVisシステムの設計と有効性を高める洞察を提供する。
関連論文リスト
- VisGraphVar: A Benchmark Generator for Assessing Variability in Graph Analysis Using Large Vision-Language Models [1.597617022056624]
LVLM(Large Vision-Language Models)は、抽象的な視覚タスクに取り組む能力がますます高まっている。
VisGraphVarは7つのタスクカテゴリのグラフ画像を生成することができる、カスタマイズ可能なベンチマークジェネレータである。
画像の視覚特性の変化(例えばノードのラベル付けやレイアウト)と視覚的不完全さの意図的な含意がモデルの性能に大きく影響することを示す。
論文 参考訳(メタデータ) (2024-11-22T10:10:53Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
本稿では,72の科学分野をカバーするNature Communicationsの記事からまとめられた包括的データセットについて述べる。
2つのベンチマークタスク(図のキャプションと複数選択)で19のプロプライエタリモデルとオープンソースモデルを評価し,人手による注釈を行った。
タスク固有データを用いた細調整Qwen2-VL-7Bは、GPT-4oや人間の専門家でさえも、マルチチョイス評価において優れた性能を示した。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation [57.40024206484446]
我々は、コンピュータビジョンモデルの体系的評価のために、完全にカスタマイズされた合成データを生成するためのツールと資産のセットであるBEHAVIOR Vision Suite(BVS)を紹介する。
BVSはシーンレベルで多数の調整可能なパラメータをサポートする。
アプリケーションシナリオを3つ紹介する。
論文 参考訳(メタデータ) (2024-05-15T17:57:56Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
車両の乗客の顔の特徴を認識する複雑なマルチタスクモデルを訓練するための合成データセットの有用性について検討する。
我々の研究は直感に反する発見を明らかにし、特に特定のマルチタスクコンテキストにおいて、ViTよりもResNetの方が優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-10T04:17:54Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - SeeBel: Seeing is Believing [0.9790236766474201]
本稿では,全画像のセグメンテーションにおけるデータセット統計とAI性能を比較するための3つの可視化手法を提案する。
我々のプロジェクトは、画像の注意重みを可視化することで、セグメンテーションのための訓練されたAIモデルの解釈可能性をさらに高めようとしている。
我々は,コンピュータビジョンとAI領域における可視化ツールの有効性を検討するために,実際のユーザを対象に調査を行うことを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:11:00Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
機械学習は、高いスケーラビリティと表現力のために、視覚化レコメンデーションに対する有望なアプローチである。
本研究は,統計的解析によりトレーニングデータの傾向を特定することで,機械学習可視化推薦システムにおけるトレーニングバイアスに対処することを目的とする。
論文 参考訳(メタデータ) (2022-03-09T18:36:46Z) - Scanpath Prediction on Information Visualisations [19.591855190022667]
本稿では,情報視覚化における視覚的満足度とスキャンパスの予測を学習するモデルを提案する。
一般的なMASSVISデータセット上で,様々な情報可視化要素に対する視線行動の詳細な解析を行う。
論文 参考訳(メタデータ) (2021-12-04T13:59:52Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。