論文の概要: SITE: towards Spatial Intelligence Thorough Evaluation
- arxiv url: http://arxiv.org/abs/2505.05456v1
- Date: Thu, 08 May 2025 17:45:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.988904
- Title: SITE: towards Spatial Intelligence Thorough Evaluation
- Title(参考訳): SITE:空間知能評価に向けて
- Authors: Wenqi Wang, Reuben Tan, Pengyue Zhu, Jianwei Yang, Zhengyuan Yang, Lijuan Wang, Andrey Kolobov, Jianfeng Gao, Boqing Gong,
- Abstract要約: 空間知能 (Spatial Intelligence, SI) は、空間的関係の可視化、操作、推論を含む認知能力を表す。
SI Thorough Evaluationに向けたベンチマークデータセットであるSITEを紹介する。
ベンチマークの計算には、31の既存のデータセットに関するボトムアップ調査と、認知科学の3つの分類システムに基づくトップダウン戦略を組み合わせる。
- 参考スコア(独自算出の注目度): 121.1493852562597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial intelligence (SI) represents a cognitive ability encompassing the visualization, manipulation, and reasoning about spatial relationships, underpinning disciplines from neuroscience to robotics. We introduce SITE, a benchmark dataset towards SI Thorough Evaluation in a standardized format of multi-choice visual question-answering, designed to assess large vision-language models' spatial intelligence across diverse visual modalities (single-image, multi-image, and video) and SI factors (figural to environmental scales, spatial visualization and orientation, intrinsic and extrinsic, static and dynamic). Our approach to curating the benchmark combines a bottom-up survey about 31 existing datasets and a top-down strategy drawing upon three classification systems in cognitive science, which prompt us to design two novel types of tasks about view-taking and dynamic scenes. Extensive experiments reveal that leading models fall behind human experts especially in spatial orientation, a fundamental SI factor. Moreover, we demonstrate a positive correlation between a model's spatial reasoning proficiency and its performance on an embodied AI task.
- Abstract(参考訳): 空間知能 (Spatial Intelligence, SI) は、神経科学からロボティクスまで、空間的関係の可視化、操作、推論を含む認知能力を表す。
本稿では,SIの視覚的特徴(単一画像,マルチ画像,ビデオ)とSI因子(環境スケール,空間的可視化と指向,内在的,外在的,静的,動的)をまたいだ,大規模視覚言語モデルの空間的知性を評価するために設計された,多色視覚的質問応答の標準化形式のベンチマークデータセットであるSITEを紹介する。
ベンチマークの計算には、31の既存のデータセットに関するボトムアップ調査と、認知科学の3つの分類システムに基づくトップダウン戦略を組み合わせて、ビューテイキングとダイナミックシーンに関する2つの新しいタスクを設計する。
大規模な実験により、先導的なモデルが特に空間的指向において人間の専門家の陰に落ちることが判明した。
さらに,モデルの空間推論能力と,具体的AIタスクにおける性能との正の相関を示す。
関連論文リスト
- Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
本稿では,まず空間的推論のコア要素を記述した詳細な分析を行う。
次に、これらのモデルの性能を、合成画像と実画像の両方で評価する。
論文 参考訳(メタデータ) (2025-03-25T14:34:06Z) - SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation [7.659514491338669]
現在の視覚言語モデルは、基本的な空間的手がかりを把握できるが、人間のような理解や現実世界の応用に必要な多次元空間的推論に苦慮している。
我々は,新しい人間注釈付きデータセットをサポートする階層的評価フレームワークであるSPHEREを開発した。
最先端モデルのベンチマーク評価では、特に距離と近接性についての推論において、重大な欠陥が示される。
論文 参考訳(メタデータ) (2024-12-17T09:10:55Z) - Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning [4.422649561583363]
言語モデル(LM)における空間推論評価のための新しいベンチマークを提案する。
現実的な3Dシミュレーションデータに基づいており、様々なオブジェクトとそれらの空間的関係を持つ一連の多様な部屋レイアウトを提供する。
重要なコントリビューションは、論理ベースの一貫性チェックツールです。
論文 参考訳(メタデータ) (2024-05-23T21:22:00Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and
Opportunities [68.03971716740823]
近年,拡張現実(AR)および仮想現実(VR)ユーザーのための没入型サイバーバーチャル体験に革命をもたらすために,ユビキタスセマンティック・メタバースが研究されている。
この調査は、ユビキタスメタバースにおける4つの基本システムコンポーネントの表現とインテリジェンスに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-13T11:14:46Z) - Top-Down Visual Attention from Analysis by Synthesis [87.47527557366593]
我々は、古典的分析・合成(AbS)の視覚的視点からトップダウンの注意を考察する。
本稿では,AbSを変動的に近似したトップダウン変調ViTモデルであるAbSViT(Analytic-by-Synthesis Vision Transformer)を提案する。
論文 参考訳(メタデータ) (2023-03-23T05:17:05Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。