Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
- URL: http://arxiv.org/abs/2503.24165v1
- Date: Mon, 31 Mar 2025 14:47:02 GMT
- Title: Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
- Authors: Peiying Hua, Andrea Olofson, Faraz Farhadi, Liesbeth Hondelink, Gregory Tsongalis, Konstantin Dragnev, Dagmar Hoegemann Savellano, Arief Suriawinata, Laura Tafe, Saeed Hassanpour,
- Abstract summary: Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype.<n>Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients.<n>Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib.
- Score: 0.5116003548817487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype. Among NSCLC patients, approximately 32.3% have mutations in the epidermal growth factor receptor (EGFR) gene. Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients with activating and T790M resistance EGFR mutations. Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib. The absence of a standard tool to accurately predict TKI resistance, including that of osimertinib, remains a critical obstacle. To bridge this gap, in this study, we developed an interpretable multimodal machine learning model designed to predict patient resistance to osimertinib among late-stage NSCLC patients with activating EGFR mutations, achieving a c-index of 0.82 on a multi-institutional dataset. This machine learning model harnesses readily available data routinely collected during patient visits and medical assessments to facilitate precision lung cancer management and informed treatment decisions. By integrating various data types such as histology images, next generation sequencing (NGS) data, demographics data, and clinical records, our multimodal model can generate well-informed recommendations. Our experiment results also demonstrated the superior performance of the multimodal model over single modality models (c-index 0.82 compared with 0.75 and 0.77), thus underscoring the benefit of combining multiple modalities in patient outcome prediction.
Related papers
- Urinary Tract Infection Detection in Digital Remote Monitoring: Strategies for Managing Participant-Specific Prediction Complexity [43.108040967674185]
Urinary tract infections (UTIs) are a significant health concern, particularly for people living with dementia (PLWD)<n>This study builds on previous work that utilised machine learning (ML) to detect UTIs in PLWD.
arXiv Detail & Related papers (2025-02-18T12:01:55Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.<n> predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.<n>We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - A multimodal ensemble approach for clear cell renal cell carcinoma treatment outcome prediction [6.199310532720352]
We developed a multi-modal ensemble model (MMEM) that integrates clinical data, multi-omics data, and histopathology whole slide image (WSI) data.<n>MMEM predicted overall survival (OS) and disease-free survival (DFS) for ccRCC patients.
arXiv Detail & Related papers (2024-12-10T02:51:14Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Self-Normalizing Foundation Model for Enhanced Multi-Omics Data Analysis in Oncology [0.0]
SeNMo is a foundation model that has been trained on multi-omics data across 33 cancer types.
We trained SeNMo for the task of overall survival of patients using pan-cancer multi-omics data involving 33 cancer sites.
SeNMo was validated on two independent cohorts: Moffitt Cancer Center and CPTAC lung squamous cell carcinoma.
arXiv Detail & Related papers (2024-05-13T22:45:44Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - EXACT-Net:EHR-guided lung tumor auto-segmentation for non-small cell lung cancer radiotherapy [7.531407604292937]
Over 60% of non-small cell lung cancer (NSCLC) patients require radiation therapy.
Our approach resulted in a 250% boost in successful nodule detection using the data from ten NSCLC patients treated in our institution.
arXiv Detail & Related papers (2024-02-21T19:49:12Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Deep learning-based approach to reveal tumor mutational burden status
from whole slide images across multiple cancer types [41.61294299606317]
Tumor mutational burden (TMB) is a potential genomic biomarker of immunotherapy.
TMB detected through whole exome sequencing lacks clinical penetration in low-resource settings.
In this study, we proposed a multi-scale deep learning framework to address the detection of TMB status from routinely used whole slide images.
arXiv Detail & Related papers (2022-04-07T07:02:32Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.