論文の概要: MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
- arxiv url: http://arxiv.org/abs/2503.24219v1
- Date: Mon, 31 Mar 2025 15:36:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:40:04.302048
- Title: MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
- Title(参考訳): MB-ORES:リモートセンシングにおける視覚グラウンドのためのマルチブランチオブジェクト共振器
- Authors: Karim Radouane, Hanane Azzag, Mustapha lebbah,
- Abstract要約: 本稿では,オブジェクト検出(OD)と視覚的接地(VG)を統合した統合フレームワークを提案する。
本モデルは,OPT-RSVGおよびDIOR-RSVGデータセットにおいて優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.08192907805418585
- License:
- Abstract: We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
- Abstract(参考訳): 本稿では,オブジェクト検出(OD)と視覚的接地(VG)を統合した統合フレームワークを提案する。
従来のODをサポートし,VGタスクの直感的な事前設定を行うために,参照表現データを用いてオープンセットオブジェクト検出器を微調整し,一部管理されたODタスクとしてフレーミングする。
最初の段階では、オブジェクトクエリ、クラス埋め込み、提案位置を含む各画像のグラフ表現を構築します。
そして、タスク対応アーキテクチャがこのグラフを処理してVGタスクを実行します。
モデルは以下の通りである。
(i)タスク認識の提案を生成するために空間的・視覚的・カテゴリー的特徴を統合したマルチブランチネットワーク
(II)提案にまたがる確率を割り当てるオブジェクト推論ネットワーク、続いて最終参照オブジェクトローカライゼーションのためのソフトセレクション機構。
OPT-RSVG と DIOR-RSVG のデータセットに優れた性能を示し,従来のOD 機能を維持しながら最先端の手法を大幅に改善した。
コードは、私たちのリポジトリで利用可能になります。
関連論文リスト
- ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models [10.858627659431928]
サービスロボットは、機能を強化するために、未知のオブジェクトを効果的に認識し、セグメント化する必要がある。
従来の教師付き学習ベースのセグメンテーション技術は、広範な注釈付きデータセットを必要とする。
本稿では,セグメンテーションアプライスモデル (SAM) の強力なゼロショット能力と,自己監督型視覚変換器 (ViT) からの明示的な視覚表現を活用することで,UOISを解く新しいアプローチ (ZISVFM) を提案する。
論文 参考訳(メタデータ) (2025-02-05T15:22:20Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
本稿では、回転物体検出問題に対処するために、適応回転変換(ARC)モジュールを提案する。
ARCモジュールでは、コンボリューションカーネルが適応的に回転し、異なる画像に異なる向きのオブジェクト特徴を抽出する。
提案手法は,81.77%mAPのDOTAデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-03-14T11:53:12Z) - GaTector: A Unified Framework for Gaze Object Prediction [11.456242421204298]
我々は、視線オブジェクト予測問題に統一的に取り組むために、GaTectorという新しいフレームワークを構築した。
入力とタスクの特異性をよりよく考慮するために、GaTectorは共有バックボーンの前に2つの入力固有のブロックを導入し、共有バックボーン後に3つのタスク固有のブロックを導入している。
最後に、重なり合う領域を共有できない場合でも、ボックス間の差を明らかにすることのできる、新しいwUoCメトリックを提案する。
論文 参考訳(メタデータ) (2021-12-07T07:50:03Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - Self-Supervised Object Detection via Generative Image Synthesis [106.65384648377349]
本稿では,自己教師対象検出のための制御可能なGANを用いたエンドツーエンド分析合成フレームワークを提案する。
オブジェクトの合成と検出を学習するために、ボックスアノテーションを使用せずに、実世界のイメージのコレクションを使用します。
我々の研究は、制御可能なGAN画像合成という新しいパラダイムを導入することで、自己教師対象検出の分野を前進させる。
論文 参考訳(メタデータ) (2021-10-19T11:04:05Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
本稿では,物体検出における識別的特徴の役割について論じる。
次に,検出精度を向上させるために,cfc-net (critical feature capture network) を提案する。
本手法は多くの最先端手法と比較して優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-18T02:31:09Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
多くの現実世界の探索シナリオ(例えばビデオ監視)では、オブジェクトは正確に検出または注釈付けされることはめったにない。
まず、エンド・ツー・エンド統合ネット(I-Net)を紹介します。
さらに,2つの新しいコントリビューションを行うDC-I-Netという改良されたI-Netを提案する。
論文 参考訳(メタデータ) (2020-09-03T03:57:50Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
本稿では,高次物体分割,エッジ検出,スケルトン抽出など,低レベルの3つの視覚問題を解く。
まず、これらのタスクで共有される類似点を示し、統一されたフレームワークの開発にどのように活用できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T11:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。