論文の概要: OSR-ViT: A Simple and Modular Framework for Open-Set Object Detection and Discovery
- arxiv url: http://arxiv.org/abs/2404.10865v1
- Date: Tue, 16 Apr 2024 19:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 18:02:19.161629
- Title: OSR-ViT: A Simple and Modular Framework for Open-Set Object Detection and Discovery
- Title(参考訳): OSR-ViT: オープンセットオブジェクトの検出と発見のためのシンプルでモジュール化されたフレームワーク
- Authors: Matthew Inkawhich, Nathan Inkawhich, Hao Yang, Jingyang Zhang, Randolph Linderman, Yiran Chen,
- Abstract要約: 我々は、OODD(Open-Set Object Detection and Discovery)と呼ばれる新しいタスクを提案する。
提案するOpen-Set Regions with ViT features (OSR-ViT) Detection framework。
OSR-ViTは、クラスに依存しない提案ネットワークと強力なViTベースの分類器を組み合わせる。
- 参考スコア(独自算出の注目度): 16.055210504552406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An object detector's ability to detect and flag \textit{novel} objects during open-world deployments is critical for many real-world applications. Unfortunately, much of the work in open object detection today is disjointed and fails to adequately address applications that prioritize unknown object recall \textit{in addition to} known-class accuracy. To close this gap, we present a new task called Open-Set Object Detection and Discovery (OSODD) and as a solution propose the Open-Set Regions with ViT features (OSR-ViT) detection framework. OSR-ViT combines a class-agnostic proposal network with a powerful ViT-based classifier. Its modular design simplifies optimization and allows users to easily swap proposal solutions and feature extractors to best suit their application. Using our multifaceted evaluation protocol, we show that OSR-ViT obtains performance levels that far exceed state-of-the-art supervised methods. Our method also excels in low-data settings, outperforming supervised baselines using a fraction of the training data.
- Abstract(参考訳): オブジェクト検出器は、オープンワールドのデプロイ中に \textit{novel} オブジェクトを検出してフラグを付ける能力は、多くの現実世界のアプリケーションにとって重要である。
残念なことに、今日のオープンオブジェクト検出の作業の多くは非結合であり、未知のオブジェクトリコール \textit{in addition} known-class accuracy を優先するアプリケーションに適切に対処することができない。
このギャップを埋めるために、Open-Set Object Detection and Discovery (OSODD)と呼ばれる新しいタスクを提案し、解決策として、ViT機能付きOpen-Set Regions(OSR-ViT)検出フレームワークを提案する。
OSR-ViTは、クラスに依存しない提案ネットワークと強力なViTベースの分類器を組み合わせる。
そのモジュール設計は最適化を単純化し、ユーザがアプリケーションに最も適するように提案ソリューションと機能抽出器を簡単に交換できる。
多面的評価プロトコルを用いてOSR-ViTは最先端の教師付き手法をはるかに超える性能レベルが得られることを示す。
また、トレーニングデータの一部を用いて教師付きベースラインよりも優れた低データ設定が可能である。
関連論文リスト
- Open-World Object Detection with Instance Representation Learning [1.8749305679160366]
本研究では,新しい物体を検知し,オープンワールド条件下で意味的にリッチな特徴を抽出できる物体検知器の訓練手法を提案する。
提案手法は頑健で一般化可能な特徴空間を学習し,他のOWODに基づく特徴抽出法よりも優れている。
論文 参考訳(メタデータ) (2024-09-24T13:13:34Z) - Weakly Supervised Open-Vocabulary Object Detection [31.605276665964787]
本稿では、従来のWSODを拡張するために、弱教師付きオープン語彙オブジェクト検出フレームワーク、すなわちWSOVODを提案する。
これを実現するために、データセットレベルの特徴適応、画像レベルの有意なオブジェクトローカライゼーション、地域レベルの視覚言語アライメントを含む3つの重要な戦略を検討する。
論文 参考訳(メタデータ) (2023-12-19T18:59:53Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Open-Set Object Detection Using Classification-free Object Proposal and
Instance-level Contrastive Learning [25.935629339091697]
オープンセットオブジェクト検出(OSOD)は、オブジェクトと背景分離、オープンセットオブジェクト分類という2つのサブタスクからなる問題を処理するための有望な方向である。
我々は,OSODの課題に対処するため,Openset RCNNを提案する。
我々のOpenset RCNNは、散らばった環境下でロボットの並べ替えタスクをサポートするオープンセットの知覚能力でロボットを支援できることを示します。
論文 参考訳(メタデータ) (2022-11-21T15:00:04Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
既存の手法では、人間の理解可能な意味論によって支配されるトップダウンの監視信号が欠落していると論じる。
マルチスケール特徴処理と変形可能な自己アテンションを用いた効率よく柔軟なMViTアーキテクチャを開発した。
多様なアプリケーションにおけるMViT提案の重要性を示す。
論文 参考訳(メタデータ) (2021-11-22T18:59:29Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Uncertainty for Identifying Open-Set Errors in Visual Object Detection [31.533136658421892]
GMM-Detは、オブジェクト検出器から不確実性を抽出し、オープンセットエラーを識別および拒否するリアルタイムの方法である。
GMM-Detは、オープンセット検出を識別および拒否するための既存の不確実性技術に一貫して勝ることを示す。
論文 参考訳(メタデータ) (2021-04-03T07:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。