Enhancing Image Resolution of Solar Magnetograms: A Latent Diffusion Model Approach
- URL: http://arxiv.org/abs/2503.24271v1
- Date: Mon, 31 Mar 2025 16:16:26 GMT
- Title: Enhancing Image Resolution of Solar Magnetograms: A Latent Diffusion Model Approach
- Authors: Francesco Pio Ramunno, Paolo Massa, Vitaliy Kinakh, Brandon Panos, André Csillaghy, Slava Voloshynovskiy,
- Abstract summary: We introduce a novel diffusion model approach for Super-Resolution.<n>We apply it to MDI magnetograms to match the higher-resolution capabilities of the Helioseismic and Magnetic Imager (HMI)<n>We evaluate the quality of the reconstructed images by means of classical metrics.
- Score: 3.3965609107402894
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The spatial properties of the solar magnetic field are crucial to decoding the physical processes in the solar interior and their interplanetary effects. However, observations from older instruments, such as the Michelson Doppler Imager (MDI), have limited spatial or temporal resolution, which hinders the ability to study small-scale solar features in detail. Super resolving these older datasets is essential for uniform analysis across different solar cycles, enabling better characterization of solar flares, active regions, and magnetic network dynamics. In this work, we introduce a novel diffusion model approach for Super-Resolution and we apply it to MDI magnetograms to match the higher-resolution capabilities of the Helioseismic and Magnetic Imager (HMI). By training a Latent Diffusion Model (LDM) with residuals on downscaled HMI data and fine-tuning it with paired MDI/HMI data, we can enhance the resolution of MDI observations from 2"/pixel to 0.5"/pixel. We evaluate the quality of the reconstructed images by means of classical metrics (e.g., PSNR, SSIM, FID and LPIPS) and we check if physical properties, such as the unsigned magnetic flux or the size of an active region, are preserved. We compare our model with different variations of LDM and Denoising Diffusion Probabilistic models (DDPMs), but also with two deterministic architectures already used in the past for performing the Super-Resolution task. Furthermore, we show with an analysis in the Fourier domain that the LDM with residuals can resolve features smaller than 2", and due to the probabilistic nature of the LDM, we can asses their reliability, in contrast with the deterministic models. Future studies aim to super-resolve the temporal scale of the solar MDI instrument so that we can also have a better overview of the dynamics of the old events.
Related papers
- Improving the Temporal Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using a Deep Generative Model [3.4611525658418754]
We present a novel deep generative model, named GenMDI, to improve the temporal resolution of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO)<n>Unlike previous studies that focus primarily on spatial super-resolution of MDI magnetograms, our approach can perform temporal super-resolution.
arXiv Detail & Related papers (2025-03-05T23:22:55Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.<n>Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.<n>Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.<n>We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - Surface Flux Transport Modeling using Physics Informed Neural Networks [0.0]
Surface Flux Transport (SFT) modeling helps us to simulate and analyse the transport and evolution of magnetic flux on the solar surface.
In this work, we demonstrate the use of machine learning techniques in solving magnetic flux transport, making it accurate.
We have developed a novel Physics-Informed Neural Networks (PINN)-based model to study the evolution of Bipolar Magnetic Regions (BMRs) using SFT.
arXiv Detail & Related papers (2024-09-03T09:41:07Z) - Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs)
Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance.
The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation.
arXiv Detail & Related papers (2024-07-16T12:28:10Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Super-Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using SDO/HMI Data and an Attention-Aided Convolutional Neural Network [4.746722440828454]
We present an attention-aided convolutional neural network (CNN) for solar image super-resolution.
Our method, named SolarCNN, aims to enhance the quality of line-of-sight magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO)
Experimental results show that SolarCNN improves the quality of SOHO/MDI magnetograms in terms of the structural similarity index measure (SSIM), Pearson's correlation coefficient (PCC), and the peak signal-to-noise ratio (PSNR)
arXiv Detail & Related papers (2024-03-27T06:58:01Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
We incorporate NASA's Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model.
We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies.
arXiv Detail & Related papers (2023-11-12T23:39:21Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion.
We demonstrate accurate predictions of evolution plasma using deep learning-based surrogate modelling tools, viz., Neural Operators (FNO)
We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models.
FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak.
arXiv Detail & Related papers (2023-11-10T10:05:00Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
We introduce a customized design for slim diffusion probabilistic models (DPM) for light-weight image synthesis.
We achieve 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks.
arXiv Detail & Related papers (2022-11-27T16:27:28Z) - Learning Latent Space Energy-Based Prior Model [118.86447805707094]
We learn energy-based model (EBM) in the latent space of a generator model.
We show that the learned model exhibits strong performances in terms of image and text generation and anomaly detection.
arXiv Detail & Related papers (2020-06-15T08:11:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.