論文の概要: Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2503.24272v1
- Date: Mon, 31 Mar 2025 16:17:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:36.566860
- Title: Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
- Title(参考訳): 学習速度と加速度:歩行者軌道予測のための自己監督運動整合性
- Authors: Yizhou Huang, Yihua Cheng, Kezhi Wang,
- Abstract要約: 本稿では,自己監督型歩行者軌道予測フレームワークを提案する。
我々は速度と加速度情報を利用して位置予測を強化する。
ETH-UCYとStanford Droneのデータセットについて実験を行った。
- 参考スコア(独自算出の注目度): 16.532357621144342
- License:
- Abstract: Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
- Abstract(参考訳): 人間の動きを理解することは、正確な歩行者軌道予測に不可欠である。
従来の手法は典型的には教師あり学習に依存しており、そこでは接地トラジェクトリは予測された軌道に対して直接最適化される。
これにより、長い尾のデータ分布による制限が増幅され、モデルが異常な振る舞いを捉えるのが難しくなる。
本研究では,位置,速度,加速度を明示的にモデル化する自己教師付き歩行者軌道予測フレームワークを提案する。
我々は速度と加速度情報を活用し、特徴注入と自己教師あり動作整合機構による位置予測を強化する。
我々のモデルは位置ストリームに速度特性を階層的に注入する。
加速度機能はベロシティストリームに注入される。
これにより、モデルが位置、速度、加速度を共同で予測できる。
予測された位置から、対応する擬似速度と加速度を計算し、データ生成された擬似ラベルから学習し、自己教師付き学習を実現する。
さらに、物理原理に基づく動きの整合性評価戦略を設計し、歴史力学と比較することで最も合理的な動き傾向を選択し、この傾向を用いて軌道生成をガイドし、制約する。
我々はETH-UCYとStanford Droneのデータセットで実験を行い、この手法が両方のデータセットで最先端のパフォーマンスを達成することを実証した。
関連論文リスト
- Multi-agent Traffic Prediction via Denoised Endpoint Distribution [23.767783008524678]
高速での軌道予測には歴史的特徴と周囲の物体との相互作用が必要である。
軌道予測のためのDenoized Distributionモデルを提案する。
我々のアプローチは、エンドポイント情報によるモデルの複雑さとパフォーマンスを著しく削減します。
論文 参考訳(メタデータ) (2024-05-11T15:41:32Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
本稿では,騒音に対する抵抗性を高めたエージェントの将来の軌道を積極的に予測する,拡散型・加速可能な新しいフレームワークを提案する。
本手法は,自律走行車に必要な厳格なリアルタイム運転基準を満たす。
Argoverse 1のモーション予測データセット上でのマルチエージェント動作予測において,大幅な改善を実現している。
論文 参考訳(メタデータ) (2024-05-01T18:16:55Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - MSTFormer: Motion Inspired Spatial-temporal Transformer with
Dynamic-aware Attention for long-term Vessel Trajectory Prediction [0.6451914896767135]
MSTFormer は Transformer に基づく動きインスパイアされた容器軌道予測手法である。
軌道の空間的特徴と運動特徴を記述するためのデータ拡張手法を提案する。
第2に,頻繁な動き変換を伴う軌道点に着目したマルチヘッド動的自己認識機構を提案する。
第三に、モデルの性能をさらに向上させるために、知識にインスパイアされた損失関数を構築する。
論文 参考訳(メタデータ) (2023-03-21T02:11:37Z) - STGlow: A Flow-based Generative Framework with Dual Graphormer for
Pedestrian Trajectory Prediction [22.553356096143734]
歩行者軌跡予測(STGlow)のための二重グラフマーを用いた新しい生成フローベースフレームワークを提案する。
本手法は,動作の正確なログライクな振る舞いを最適化することにより,基礎となるデータ分布をより正確にモデル化することができる。
いくつかのベンチマークによる実験結果から,本手法は従来の最先端手法に比べて性能が向上することが示された。
論文 参考訳(メタデータ) (2022-11-21T07:29:24Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。